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The present work is concerned with the asymptotic properties of the field radiated by a classical 
spinning (and nonspinning) point charge in arbitrary motion. It is demonstrated that the expression 
found for the radiated angular momentum is satisfactory in that it is ,a 4-tensor which is spacelike 
surface-independent. The angular-momentum radiation rate is then expressed in terms of the retarded 
kinematic properties of the particle. In addition, a "center-of-energy" theorem is proved for nonspinning 
charges in arbitrary motion-a result which follows from the demonstrated result that nonspinning 
charges also radiate angular momentum. Finally, it is demonstrated that the (linear) energy-momentum 
radiation rate is independent of the spin of the involved charge. The discussion is manifestly covariant 
throughout and many mathematical details are deferred to appendices. 

I. INTRODUCTION 

The present work is concerned with certain asymp­
totic properties of the field radiated by a charged 
particle. Specifically, we are concerned with finding 
the asymptotic expressions for the angular and linear 
momentum radiated by a spinning or nonspinning 
classical point charge undergoing arbitrary motion. 
By a classical point charge we mean the following: 
The charge is considered to be classical in that we shall 
consider it to be composed of an essentially arbitrary 
distribution of charge and the exterior field of this 
charge will then be calculated as that arising from this 
distribution. The charge is considered as a point 
charge in that, among other things, retardation effects 
arising from the charge's size are neglected. However, 
the particle is still assumed to have a nonzero moment 
of inertia about its spin axis. These points will be 
elaborated later on in the presentation. 

The format of the paper is as follows: 
In the next section we derive the field produced by a 

spinning point charge. 
In Sec. III we give the definition of the angular 

momentum radiated by a spinning point charge and 
demonstrate that the definition is satisfactory. 

In Sec. IV the angular-momentum radiation rate is 
then expressed in terms of the charge'S retarded 
kinematical properties. 

In Sec. V we prove the "center-of-energy" theorem 
which is a consequence of the demonstrated result 
that even nons pinning charged particles radiate an­
gular momentum. 

Finally, in Sec. VI, it is demonstrated that the 
emission of (linear) energy-momentum is independent 
of the spin of the charge involved. 

Several appendices are included where many of the 
mathematical details are considered. 
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II. FIELD OF A SPINNING POINT CHARGE 

The model of the electron assumed in this paper is 
that of a spherical charge of radius ro (in the momen­
tary rest system) spinning about an axis through the 
center of the charge. The electron is further assumed 
to have a cylindrically symmetric charge and mass 
distribution about the spin axis (again in the rest 
system). After a certain stage of the calculation, ro will 
be allowed to go to zero. 

For the moment, it is assumed that ro -=- 0 and we 
consider the charge to have its center of mass at rest 
in an inertial frame and to be spinning at a constant 
rate about a fixed axis. The charge can then be thought 
of as composed of many small parallel current loops. 
The vector potential ~A, due to a very small current 
loop of radius $ carrying a constant current ~i, is 
approximately given by the expression 

AA A • 7Te 
Ll. = Ll.! - n x r 

er3 
' 

(1) 

where n is a unit vector in the direction of the spin axis 
and r is the vector going from the current loop to the 
field point. 

Assuming then that the spinning charge is made up 
of such current loops and that the charge density 
p(x) depends only on the distance x from the spin 
axis, we have for the vector potential At, due to the 
spinning electron, the approximate relation 

At = ~ n x r r x 2p(x) d3x, (2) 
2er Jelectron 

where w is the spin in rad/sec. 
Now, we assume that 

e 
p(x) = - Pmass(x), 

m 
(3) 

Copyright © 1969 by the American Institute of Physics 
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where e and m are the charge and rest mass of the 
electron, respectively, and Pm_ex) refers to the mass 
density within the electron. 

Therefore, for such a spinning electron we have, as 
ro -- 0, the relation 

ef 
At = -- w x r, W == WD, (4) 

2mcr3 

where [ is the moment of inertia about the spin axis. 
This expression is now exact since we have let ro go to 
zero. Note, however, that [remains finite. This means, 
of course, that, as ro -- 0, Pm_ex) --+ 00. 

Finally, note that the vector potential referred to 
so far pertains only to that part arising from the 
electron spin-denoted by a vertical arrow as sub­
script. 

We shall now write the above expression in a 
Lorentz covariant manner as follows: In the following, 
a superscript 0 placed above a quantity indicates it is 
evaluated in the electron rest system, otherwise the 
quantity is to be evaluated in an afbitrary Lorentz 
frame; Latin indices go from 1 to 3, while Greek 
indices go from 1 to 4; and the space-time metric gllv 

is taken as the diagonal matrix (1, 1, 1, -1), where 
the invariant arc length is given by - e2 dr2 = 
g/lV dxll dxv ; finally, let UOIl.-, (rlr, 0) denote a con­
travariant 4-vector. Then, 

UOIlUO = UIlU = 1, 
I' I' 

UOIlV~ = UIlVIl = 0, (5) 

where Vil is the world velocity dxll/4T. 
We may now write Eq. (4) in the form 

AOi = _e_ MOiPU~, (6) 
2mcl 

where P (not to be confused with charge or mass 
density) == rand 

MOIlP = _MOP/l == c-Ic5Il"PYfw~V~ (7) 

and where c51l"Py is the Levi-Civita tensor density and 
w~ is the 4-angular velocity vector (Wi, 0). It is instruc­
tive to display the tensor MO"P; it has the form 

( 0 

fW3 -fW2 

~} -fw 0 fWI 
MO/lV,...., 3 

fW2 -fWI 0 

0 0 0 

(8) 

Therefore, 
MOllvVvo = MIlVVv = O. (9) 

Now, the contribution to the vector potential coming 
from the charge itself arises only in the 4-component, 

and is given by the relationl 

V 04 
A04 = _e - • (10) 

cp 

Therefore, using Eqs. (6) and (10), we have for the 
entire vector potential the expression 

V OIl 
A~1l = _e_ MOIlPU~ + e_ (11) 

2mcp2 cp 

in the rest frame of an electron undergoing constant 
linear and angular motion. The subscript t is used 
here to denote the entire (total) vector potential. 

We now consider the case where the electron's 
linear and rotational velocities may be arbitrary. A 
little reflection shows that for a particle of zero size 
the above relation must again be valid in the electron's 
momentary rest system. Therefore, we have for an 
electron in arbitrary motion (in an arbitrary Lorentz 
frame) the relation 

I' e pP eVil Il I' 
At = --2M Up + - == At + A. (12) 

2mcp ep 

We are now able to evaluate the field tensor 
FIlV - FIlV + FIlV where 

t - t ' 

F:V = a/lA~ - aVA~, 

F /lV ':IIlAv ':IVAIl t =u t -u 10 
Fllv = allAv _ aVAil. 

We first evaluate Fr as follows: 
Using the re1ations2 

allp = Ull + AuRlllc2, 

allf(T) = _ ! df RP , 
edT p 

(13) 

(14) 

where all quantities are at their retarded values, J(T) 
is any function of the proper time, R = p(UIl + Vllje) 
is the null vector going from the retarded location of 
the charge to the field point, and Au == Aaua, we 
obtain the result 

all At = _ ~(Ull + AuRIl)MVPUp 
2mcl c2 

___ e_ MVPU pRIl 
2me2l 

+ _e_ MVP ApRil + _e_ MVIl (15) 
2mc3l 2mel' 

1 See, for example, F. Rohrlich, Classical Charged Particles 
(Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965), p. 83. 
The notation in this work will, for the most part, follow that in this 
reference. 

• Reference I, pp. 83-84 
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where Ap == Vp = dVp/dT. From this expression we 
then have Ff. We also have the familiar expression3 

pv = 2e
2 

V[lluvl + 2e
2 

{A[llvvl _ U[Il(VVIA
u 
+ Avl)}, 

cp pc 
(16) 

Au (SPACELIKE) 

where the kinematic quantities are retarded and ACT (TIMELlKE) 

A[llbvl == l(A"bv - AVb"). (17) 

Therefore, from Eqs. (15) and (16) we have the 
expression for Fr = Fr + F"V. 

III. DEFINITION OF RADIATED 
ANGULAR MOMENTUM 

In this section we wish to construct a suitable 
definition of the radiated angular momentum from an 
arbitrarily moving (possibly spinning) point charge. 

In the case of free radiation fields one defines the 
energy-momentum vector of the field pll as 

pll = ~ I fJllV d(1v, (18) 

where fJllV is the stress-momentum tensor given by the 
expression 

fJllV = 4~ (paF~ + 19/vF"pF"P) (19) 

and where the above integration can be over any 
(plane) spacelike surface, i.e., it is spacelike surface­
independent. 

Again for free fields one defines the angular momen­
tum of the field as 

(20) 

where the integration is again over any spacelike 
surface and 

J«IlV == _(fJallxv - fJ"VX"). (21) 

This definition is satisfactory as long as the entire 
radiation field is contained within a finite region. 

Now, in the case of an arbitrarily moving charge one 
defines the energy-momentum radiated by it-in a 
proper time dT-by modifying Eq. (18) to give 

dP:.Ad = lim ! 1 fJllV d(1v, (22) 
p-+ 00 C (Au) 

where 11(1 is a spacelike surface segment (dependent 
on dT) that is infinitely far away from the location of 
the charge during dT, as depicted in Fig. 1. This 
definition is satisfactory since it can be shown that the 

3 Reference I, p. 106. 

A (LIGHT CONE) 

FIG. I. Particle world line and associated surfaces. 

energy-momentum radiation rate so defined is a 
4-vector independent of which spacelike surface 
segment is selected at p = 00.4 

We shall now consider a similar procedure to define 
the rate of emission of angular momentum by a 
(possibly spinning) charged particle in arbitrary 
motion, where the entire radiation field is assumed to 
be contained within a finite region. We tentatively 
define then the angular momentum radiated by the 
charge in the proper time dT as 

(23) 

where 11(1 is a limiting surface segment determined by 
dT in the same manner as in the energy-momentum 
case.5 Note the subscript t here, which indicates that 
the total field is being used. To demonstrate that this 
definition is satisfactory we presently show that the 
above quantity is a tensor which is independent of the 
spacelike surface segment 11(1. For this to be so, it is 
sufficient that (see Fig. 1): 

lim r J?V d(1" = 0, (24) 
p-+ 00 JA(Jight cone) 

since J:':v = ° everywhere outside the charge. This 
statement is now proved as follows: 

On the light cone d(1" is of order p, viz., du" = R"dw, 
where dw is an element of surface area. The only 
nonvanishing contributions to the above integral 
must then come from the terms in fJr of order p-2. 

4 Reference I, p. 108. 
5 This definition has also been recently considered by J. N. 

Goldberg [Perspectives in Geometry and Relativity (Indiana Univer­
sity Press, Bloomington, Indiana, 1966), p. 167; J. Math. Phys. 
S, 172 (1964)] in a somewhat more general context than that 
involved here. 
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0iV is composed of Frv, which, in turn, is made up of 
FIlV and Fr. As such, or contains terms ranging in 
p from p-6 to p-2. The terms involving p-n (n > 2) 
will not contribute in the limit as p - 00. The only 
terms in Or involving p-2 come from the "radiation" 
term in OIlV, i.e., from the term 

(25) 

Thus, 

lim r J?V d(f" 
p-+ 00 JIl.(Jight cone) 

= ~ f A(WRIlxv - R"R"RIl)R" dw = 0, (26) 

since R"R" = O. Therefore, expression (23) is a 4-
tensor which is spacelike-surface-independent and can 
be taken as the proper expression for the angular­
momentum emission. Because the integral over the 
light cone vanishes, we may also write (see Fig. 1): 

dJr = lim! i J?V d(f" 
p-+ 00 C Il..,(spacelikc) 

= lim -.! r J?V d(f", (27) 
p-+ 00 C Jll.a(timelike) 

where d(f" = V.p2 dOc d-r for the timelike surface and 
Gauss' theorem has been used. In this latter form, the 
emission rate is more easily calculated. 

IV. KINEMATIC EXPRESSION FOR 
THE EMISSION RATE 

Using the above expression for the angular­
momentum emission, we shall now calculate the 
angular-momentum-emission rate from an arbitrarily 
moving spinning (and nonspinning) point charge. 
This expression will be formul<'ted entirely in terms 
of the retarded kinematical properties of the emitting 
charge. 

Now, since d(f", for a timelike surface, is of order 
p2, the only contributions to dJrv will come from 
terms in J?V of order p-2 and higher, that is, from 
terms in O~v of order p-3 and p-2. The terms in O~v of 
order p-2 will give a contribution of order p, which, 
when p - 00, might diverge. It is shown in Appendix 
A that this, in fact, is not so, the contribution being 
zero. We next turn to the contributions to dJr coming 
from terms in 0iv of order p-3. Such terms come from 
two sources: that depending on spin terms and that 
independent of spin terms. That is, 0't v can be decom-

posed as follows: 

OIlV = OIL\' + ~ (FIl"Favg +.1 IlvFt rfl) 
t 47T t a" 4g "P t 

+ ~ (FIl"Favg + .lgllvFt F"P) 47T i a" 4 ap 

+ ~ (P"Ft"gaa + tgllV FapnP) == OIlV + Or. 
47T 

(28) 

We consider the spin contribution first. The only 
terms of order p-3 come from a term of order p-l in 
FIlV and one of order p-2 in Fr and a product of terms 
in FIlV of order p-l and p-2. The term of order p-2 
coming from Ff" will be denoted by Fr{O(p-2)} and 
is given by the expression 

F~V{O(p-2)} = _ _ e _ {RpR[Il(2MVlfl + 3Au MVlfJ)} 
mc2p4 c 

(29) 
and the terms in FIlV of order p-:-l are given by 

PV{O(p-l)} = 2e
3 

{A[IlVVl _ cU[IlAvl _ AuU[llvvl} 

pc (30) 
and 

FV{O(p-l)} = ~ {A v v1 - cU Avl - A U vvn 
a 3 [" [a u [" J , 

pC 
(31) 

where 

A[aBP1 == i(AaBP - AP Ba). (32) 

Now, let 0t{O(p-3)} denote the term of order p-3 in 
Or. Then we have 

OIlV{O(p-3)} = 4~ F~"{O(p-l)}F~{O(p-l)} 

+ .1.. P"{O(p-l)}F~t {O(p-l)} 
47T 

+ .1.. gIlVFap{O(p-l)}FtP{O(p-l)}. (33) 
87T 

After a straightforward but very lengthy calculation 
(see Appendix B) we finally obtain the result 

f(O~i{O(p-3)}xi - Ofi{O(p-3)}Xi)U
ll
l dO/ r .•. 

= _ 2e
2 

A (M"';Vi _ M"iV i)/ (34) 
3mc 5 " r.R.' 

where r.s. refers to the rest system. Therefore, the 
contribution to the rate of emission of (space-space) 
angular momentum due to the spin is, in the electron 
rest system, 

dJ
ii 

(spin)1 = _ 2e
2 

Aa(MaiV i _ MaiV;)1 = O. 
d-r r.s. 3mc5 r.s. 

(35) 
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We now evaluate the space-time contribution to the 
emission rate due to the spin. After a lengthy calcula­
tion (see Appendix C), we obtain the expression 

" 2 dJ ( ')1 4e M' aiA I -SIn ----
d 

P r.8. - 3 4 a r.s .. 
T me 

(36) 

We may write the results of Eqs. (35) and (36) 
covariantly as 

dJafJ (spin) = _ 4e
2 

Aa(Mllflva _ MllaVfJ). (37) 
dT 3mc5 

We now turn to the contribution to the emission of 
angular momentum coming from the nonspin terms, 
i.e., from ()IlV. We are interested, then, in evaluating 
the quantity 

(38) 

where we are only interested in terms of order p-3 in 
()I'V contained in the above integrand. We then take 

rl'V = ()al'{O(p-3)}xV _ ()av{O(p-3)}xl', 

where ()2fJ{O(p-3)} is given by the expression 

eafJ{O(p-3)} = _e
2

_[Au RaRfJ 
27TC2p3 p2 

_ (V(:Au + A(a)R:l 

where 

(39) 

A(aBfJ) == HAaBfJ + AfJBa). (40) 

Inserting this into Eq. (38) then gives the result 

dJI'V 
-- (no spin) 
dT 

= e
2

2 
f(AuUI'XV - A"U"xl' - A I'x ,. + AVxl')t dO. 

27TC 

( 41) 
Therefore, 

dJii 
. 

dT (no SpIn)I •.•. = 0 (42) 

and 
dJ4i

• 4e2 
i 

dT (no SPIn)lr.s. = - 3c2 Air.,. . (43) 

Expressing these results in covariant form, we then 
have 

dJl'v 4e2 

- (no spin) = - (AI'VV - A'VI'). (44) 
dT 3c3 

Therefore, even a nons pinning charge emits angular 

momentum in a form given by a covariant "Thomas 
precession" term. 

Combining Eqs. (44) and (37), we then have as the 
expression for the total asymptotic angular-momen­
tum rate of emission by a classical charged particle 
undergoing arbitrary spin and linear motion 

dJtfJ = 4e
2 

A (Ml'aVfJ _ Ml'fJVa) 
dT 3mc5 I' 

+ ;:: (AaVfJ - AfJVa), (45) 

where all quantities have their retarded values. 

V. CENTER-OF-ENERGY THEOREM 

The fact that even a nonspinning charged particle 
may emit angular momentum leads to an interesting 
theorem. 

Consider the angular momentum dJ4i (no spin), 
radiated by the moving charge in the proper time dT, 
as given by the expression 

dJ4i(no spin)lr.s. = lim.! r «()44Xi - ()4iX4) d3xlr.s., 
p"" 00 c J (&,,) 

(46) 

where we have selected a spacelike surface segment 
(dependent on dT as in Fig. 1) which is orthogonal to 
the retarded world velocity of the particle (recalling 
that the choice of surface segment is unimportant). 

Now, 

lim r ()44 d3xlr.s. = -dWl r.s., 
p"" 00 J (&,,) 

lim r ()4i d3xl r.s. = -c dpilr.s. = 0, (47) 
p"" 00 J (&,,) 

where dW and dpi are the energy and linear momen­
tum radiated by the charge during dT. 

We now define the "center of radiated energy" by 
the relation 

Therefore, 

dJ4i(no spin)lr.s. = - 8: dWlr.s.. (49) 
c 

It then follows that 

Ri = -c dJ
4i I = -c dJ

4i
jdT I 

dW r.s. dWjdT r.8. 
(50) 

Now, 

(51) 
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From Eqs. (51) and (43) we then obtain 

R = 2~:1 . 
f.B. 

(52) 

That is, if we follow the radiation out from an 
accelerating charge, its "center" as defined above 
has a fixed location relative to the charge at the 
(retarded) time of emission which depends only on the 
charge's intrinsic acceleration A (retarded).6 

VI. ENERGY-MOMENTUM EMISSION 

It is also interesting to calculate the asymptotic rate 
of energy-momentum emission from an arbitrarily 
moving spinning charge. 

As with the nonspinning charge, we shall define 
the energy-momentum emission for a spinning 
charged particle by the relation 

dpII = lim ! i OIlV da t tv, 
p .... oo C (4a) 

(53) 

where da is again the customary limiting spacelike 
surface segment. 

Since 

r Ordav~O, as p~oo, (54) J MJip:ht cone) 

we again have that dPr is surface-independent as it 
must be. 

Then we also have the relation 

dPr = lim ! r (W dav 
p .... 00 c J 4a(BPaceJike) 

I· 1 i O"V d = 1m - - t av • 
p .... 00 C 4a(timeJike) 

(55) 

Now, Of" is composed of terms of orders p-6, p-5, 
p-4, and p-3. Therefore, in the limit as p ~ 00, Or 
gives no contribution to the above integral and we 
have 

dPr = ~ ~ A2VII. 
dT 3 c5 

(56) 

That is, the asymptotic value for the rate of emission 
of energy-momentum is independent of the spin of the 
charged particle. 

APPENDIX A: CONTRIBUTION TO ANGULAR 
MOMENTUM FROM TERMS OF ORDER p-2 

Here it is shown that the terms in Orv of order p-2 
give a contribution of zero to the angular-momentum­
emission rate. For the order being considered, then, 

8 This may be regarded as a generalization Of the "center-of-mass" 
theorem for free radiation fields. See Ref. I, p. 99. 

the term we must consider is 

_e2 

IlIv == lim --5-2 
p .... oo 47TC P 

X f(A! - A2)(R"RllxV - R"R"xll)V"c dO.. (A1) 

It will presently be demonstrated that this integral is 
zero. Using the relation RII = p(VII + VII/c), the 
above expression becomes 

IIIV = lim -e: f(A! _ A2){ (VII + VII)xv 
p .... oo 47TC C 

- (Vv + :V)xII}C dO.. (A2) 

There are various types of terms to evaluate here. 
If these are evaluated in the rest system, we obtain 

f (UIIXV - UVXIl) dnl r . B• = 0, 

f( VIIXV - VVXIl) dO.l = 0 r.B. , 

(A3) 

f
A2(UIIXV - UVx") dO.l = 0 u r.B. , 

f
A2(Vll XV - VVXIl) dnl = o. 'U f.B. 

Therefore, [/lV = 0 in the rest system and, since IlIv 
is a tensor, IIIV = 0 in any Lorentz frame. 

APPENDIX B: SPACE-SPACE CONTRmUTION 
TO ANGULAR MOMENTUM 

Here we calculate the space-space contribution to 
the emitted angular momentum due to the spin 
portion Or. As discussed before, we only need 
consider terms of order p-3. We wish then to evaluate 
the quantity 

dJ
ii 

(spin) = -lim f[IW{O(p-3)}x i 

dT p .... oo 

- O~i{O(p-3)}Xi]UII/ dO.. (Bl) 

Referring to Eq. (31), we see that 

OnO(p-3)} = ~ Ff"{O(p-2)}F:{O(p-l)} 
47T 

+ 4~ £!I"{O(p-l)}F~t{O(p-2)} 

+ ~ g"VF"p{O(p-l)}FfP{O(p-l)}. 
&7T 

(B2) 
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The above terms (on the right-hand side) are given 
as follows: 

e2 

first term = - R/lR[flA~l/l 
27Tc5m/ 

X (A[~vvl - cU[~Avl - A"U[ .. VV1), 

e2 

second term = - 5 5 R/lR[~Av]/l (B3) 
27TC mp 

x (A[flV~] - cU[flA~l - A"U[flV~l), 

e2 

third term = - gflVR R[~A/lla 
47TC5mp5 a 

X (A[~V/ll - cU[~Apl - A,p["V/l1)' 
where 

Av/l == 2Mv/l + 3A" MVP. (B4) 
c 

In the rest system, one obtains the following results 
(where m =;I: 4): 

f (first term)U flXm p2 dO. 
2 

= _ _ e_ {-NM~mA AV + M"VAmA) 
2mc5 15" " 

J (second term)Upxml dO. 
2 

= _ _ e _ { --~(MmPv: A v + MVPv: Am) 
2mc5 15 P P 

(B5) 

+ !MamA"Vv + t(M"VAmA" + M .. mAVA~)}, (B6) 

J(third term)Uflxmp2 dO. 
2 

= _ _ e_ {_~(MmaVAv + MvaVAm) 
4mc5 15 a a 

- t(MPmApAv + MPVApAm)}. (B7) 

Inserting these expressions into Eq. (BI) then leads 
to Eq. (35) for dJii/dr (spin). 

APPENDIX C: SPACE-TIME CONTRIBUTION 
TO ANGULAR MOMENTUM 

Here we calculate the space-time contribution to 
the emitted angular momentum due to the spin 
portion Or. We desire, then, to evaluate the quantity 

dJ
i4 

(spin) = -lim f[Ot i
{ O(p -3)}X4 

dr p"'oo 

- Ot4{O(p-3)}Xi]Ufl P2 dO.. (C1) 

Again, in the rest frame, we obtain the following 
results (for y = i): 

f(first term)Uflx4p2 dO. 

= - ~ {tcM"VA +.i M~Pv: A vv} (C2) 
2mc5 ~ 3c P,,' 

f (second term)Uflx4p2 dO. 

= - ~{~ M~Pv: VVA - 2 M"Pv: A VV + ~cM~vA } 
2mc5 c P "3c P" 3 " 

(C3) 

J(third term)Uflx4l dO. = O. (C4) 

Further, with y = 4, we have 

J
(first term)U flX i p2 dO. = - ~ acA"M~i}, 

2mc5 

(C5) 

f
(SeCOnd term)Uflxip2 dO. = - ~ {icA~M"i}, 

2mc5 

(C6) 

f (third term)U flXip2 dO. = o. (C7) 

Inserting these results into Eq. (CI) then yields 

dJi4
• 4e2 •. 

- (spm)1 = - - . cM"'A I (C8) dr r.8. 3mc5 " r.8.· 
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Nonsaturation of Gravitational Forces 

JEAN-MARC LEVy-LEBLOND 

Physique Theorique, Nice*t 

(Received 30 March 1968) 

Rigorous ineq~aliti~s are d~riv~d fo~ the gr~und-st~te energy of a norirelativistic quantum-mechanical 
syste~ or N partIcles In gravItatIOnal Interaction. It IS shown that gravitational forces do not saturate 
the bIndIng energy per particle !ncreasing with N, like N2 for a Bose system, like (N4/3) for a Fermi 
systeJ? As a b~-product, we obtaIn a generally valid Heisenberg-like inequality for N-fermion systems ex­
pressIng very SImply the effect of the Pauli exclusion principle. These results are extended to the ca;e of 
a system o.f oppositely charged pa.rticles .which is. shown to behave, with respect to gravitational forces, 
as a ~erII.l1 system as soon as partlc~es ~Ith one SIgn of charge only are identical fermions. This explains 
quantltauve~y how and when gravItational forces finally predominate over Coulomb forces for large 
eno,;!gh bodIes (pl~ets). A furt~er e~tension to the case where relativistic effects enter only at the kine­
matical level permIts us to denve ngorously from first principles the existence and an estimate of 
the 'Chandrasekhar mass limit, above which no collection of cold matter is stable (white dwarf stars). 

INTRODUCTION 

It has been emphasized by Fisher and Ruelle! that, 
in order to establish a rigorous basis for the statistical 
mechanics of an infinite system of interacting particles, 
one must be sure that the relevant forces have a 
saturating character: The total energy of a (finite) 
system ought to possess a lower bound which is 
extensive, i.e., proportional to the number of particles. 
When this is not true, the binding energy per particle 
increases indefinitely with the number of particles, 
so that it becomes obviously impossible to define the 
usual thermodynamic variables for infinite systems; 
the ground state of the system is a single bound state, 
more and more condensed as its mass increases. 
Fisher and Ruelle have given general criteria which 
guarantee the saturation property for not-too­
singular forces.! However, there exists in nature only 
a very limited number of interactions, and it is for 
these, in the last resort, that we are interested in the 
saturation problem. 

In the case of Coulomb forces, it has been proved by 
Dyson and Lenard,2 in a splendid analysis, that there 
is saturation if particles with charges of a given sign 
belong to a finite number of fermion species. We thus 
understand the stability of ordinary matter. It is 
clearly impossible at the present stage to refine this 
understanding by including the relativistic features of 
electromagnetic interactions (retardation effects, radi­
ation, etc.) or to discuss the saturation problem for 
strong or weak interactions. There still remains to be 
considered the universal gravitational interaction, 
which can in fact be discussed much more easily than 
the Coulomb case, in the nonrelativistic limit at least. 

* Equipe de Recherche Associee au C.N.R.S. 
t Postal address: Physique Theorique, Faculte des Sciences 

Pare Valrose, 06 - Nice, France. ' 
1 M. E. Fisher and D. Ruelle, J. Math. Phys. 7, 260 (1966). 
• F. J. Dyson and A. Lenard, J. Math. Phys. 8, 423 (1967). 

Such considerations are relevant for the study of 
matter in bulk on an astronomical scale. 

As can be easily conjectured, and is proved below, 
gravitational forces, becau.se of their long-range and 
purely attractive character, do not saturate. This 
already results from Theorem III of Fisher and 
Ruelle,! which, however, does not give the exact 
degree of nonsaturation. The nonextensive nature of 
the thermodynamic functions has also been noted by 
Salzberg3 in an investigation of classical systems with 
gravitational interactions in one and two dimensions. 
A more detailed investigation seems interesting as it 
touches upon topics of general interest in astro­
physics. Obviously, we need to state our problem in 
quantum-mechanical terms since, classically, the 
simplest two-body gravitational system already has 
an energy spectrum unbounded from below. The 
crushing of matter under its own gravitational pull 
can only be prevented by quantum effects. We thus 
consider the Hamiltonian of an N-particle system 
interacting via gravitational forces and want to 
study the ground-state energy as a function of N. 

We start by giving in Sec. I a heuristic and ele­
mentary derivation of our results. In Sec. II, upper 
and lower bounds are rigorously derived for the 
ground-state energy of a gravitationally interacting N­
particle system with a special emphasis on the role of 
the exclusion principle. In the last section, we consider 
realistic systems where Coulomb and Newton forces 
are simultaneously operating, and comment on the 
physical meaning and applications of our results.' 

I. HEURISTIC DISCUSSION 

Consider a system of N particles with a common 
mass m. Let p be the average momentum of a particle 
in the system and r be some average distance between 

• A. M. Salzberg, J. Math. Phys. 6, 158 (1965). 
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any two particles. We may estimate the total energy 
of the gravitationally interacting system by 

E(N) c::: N(p2/2m) - lN2(Gm2/r), (1) 

G being Newton's constant, and lN2 '" IN(N - 1) 
the number of interacting pairs. According to Heisen­
berg's uncertainty relation, the position of a particle 
cannot be defined to better than Ii/p, neither can then 
the distance between two particles, so that quantum 
mechanics requires r ~ Ii/p. We obtain 

E(N) ~ N(p2/2m) - tN2(Gm2p/li) (2) 

and minimize this estimate with respect to the free 
parameter p. For 

Po '" N(Gm3/21i), (3) 

we have the lowest energy 

(4) 

Without further constraints we are led to predict a 
cubic variation of Eo(N) with N. 

Things, however, are different if the N particles 
are identical fermions. Indeed, we may interpret the 
exclusion principle as forbidding the presence of more 
than one particle within any region with linear 
dimensions of the order of the average de Broglie 
wavelength Ii/p.' Accordingly, N particles occupy a 
total volume N(Ii/p)3, so that the average separation 
of a pair is of order Nl(li/p). We now have: 

2 N2 G 2 2 • G 2 
Eter(N) ~ NL --~ = NL - N3~p. 

2m 2 Nlli/p 2m 21i 
(5) 

The minimal energy is obtained for 

p~er '" N f (Gm3j21i), (6) 

and its value is: 

E~cr(N) '" -N~(G2m5/81i2). (7) 

The exclusion principle, as expected, reduces the 
degree of un stability , but is by far insufficient to 
guarantee the saturation of gravitational forces. 6 

II. PURELY GRAVITATIONAL FORCES 

Theorem 1: For a system of N particles with com­
mon mass' m in gravitational interaction, when no 

, It may be amusing to note that we do in fact obtain a proof of an 
inequality justifying this interpretation of the Pauli principle, 
following a rigorous treatment of the gravitational Hamiltonian 
(see Sec. II). 

, Note that in a d-dimensional space, (7) would be replaced by 
the following estimate: E!er(N) "'" -N3-2/d(G2m'/S1I I) so that 
gravitational forces just saturate for a one-dimensional fermion 
system. 

• The same results remain true for particles with different masses 
if m is interpreted as the largest mass. The assumption of a common 
mass merely simplifies the writing of our equations. 

exclusion principle operates, the ground-state energy 
obeys 

-AN(N - 1)2(G2m5/1i2) ~ Eo(N) 

~ -BN(N - 1)2(G2m5/1i2), (8) 

A and B being positive constants. 

Proof: 
(a) Lower bound:We write the Hamiltonian for the 

system as 
N p2 Gm2 

H = I ---.i. - I I (9) 
i=12m l~i<i~N Iri - ril 

where Pi and r i are the momentum and position of the 
ith particle. Using a trick of Ruelle and Fisher,! as 
reformulated by Dyson and Lenard,2 one may write 

H = I I [ p~ + p~ - Gm
2 

] 

i<i 2(N - l)m 2(N - l)m Iri - ril 

= I I hi}' (10) 
i<i 

The Hamiltonian H thus appears as a sum of 
IN(N - 1) two-body Hamiltonians hij of hydro­
genic type with known states: 

EO = inf (hii ) = -iCN - 1)(G2m5/1i2). (11) 
Then: 

EoCN) = inf (H) ~ I I inf (hij), (12) 
i<i 

Eo(N) ~ -tN(N - 1)2(G2m6/1i2). (13) 

(b) Upper bound:We use the Rayleigh-Ritz varia­
tional principle to obtain an upper bound for the 
ground-state energy by computing the expectation 
value of the Hamiltonian with the completely sym­
metrical wavefunction 

N 

'Y(rl' r2 , ••• , rN) = II cp(}"ri ), (14) 
i=l 

where the scale factor}" and the function cp are to be 
varied. The result is 

('Y, H'Y) = ),2N(fj2/2m)rx - AtN(N - 1)Gm2{J, (15) 

with 

rx = fl'VCPl2 dar 

(J = If 1 cp(r) I 
2 

I cp(r')1
2 

dar d3r'. (16) 
Ir - r'l 

Minimizing the expectation value (15) with respect 
to }", one obtains 

Eo(N) ~ -l({J2jrx)N(N - 1)2(G2m6/1i2). (17) 

The largest value for the coefficient {J2/ rx might be 
obtained by solving the corresponding variational 
problem for the wavefunction cp, very similar in form 
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to Hartree's equation for a 2-electron atom. However, 
we do not try here to optimize our bounds and will be 
content to say that with a simple exponential trial 
function, one may obtain the value lJ2jrJ. = 0)2. 

Theorem 2: For a system of N identical fermions 
with common mass m, the ground-state energy obeys 

-A'N(N - l)t(G2m5/1i2) 

::;; EMN) ::;; -B'N!(N - ll(G2m5/1i2), (18) 

A' and B' being positive constants. 

Proof" 
(a) Lower bound: We just need to refine the tech­

nique already used and partition the Hamiltonian 
(9) in the following way: 

H=![!( p~ _Q m
2 )J=!hi • 

i=I i<f.i 2(N - l)m 2 Iri - rll i=I 
(19) 

H now appears as a sum of N similar Hamiltonians hi' 
each representing (N - I) independent particles 
(j ~ i) in the field of a fixed one (the ith particle). The 
ground state of hi is obtained by distributing (N - I) 
fermions over the first (N - I) levels of this hydrogenic 
atom. These levels are given by 

'YIn = -n-2HN - l)(G2m5j1i2), n = 1,2, .. " (20) 

with a degree of degeneracy gn = n2• The last level to 
be completely filled is 'YI. such that 

• .+1 
! gn ::;; N - 1 < ! gn' (21) 
n=l n=l 

iv(v + !)(v + 1) ::;; N - 1 

< l(v + l)(v + !)(v + 2), (22) 
and one has 

.+1 
(hi> ~! g.'YI. = -(v + I)HN - 1)(G2m5jIi2), (23) 

n=I 

(hi> ~ -!(N - l)t(G2m5j;,2), (24) 

since (22) implies v + 1 ::;; 2(N - I)!, for N ~ 2. 7 

Finally, 

E~(N) ~ N(hi ) = -iN(N - 1)t(G2m5jIi2). (25) 

(by Upper bound: We use the variational principle, 
computing the expectation value of H for the anti­
symmetrical Slater wavefunction 

'F/(rl' r2 , ••• , rN) = (N!)-! det [tpk(Arl)], (26) 

where A, is a scale parameter and {'Ilk} a set of localized 
wavefunctions 

(27) 

• Asymptotically, for N large enough, this can be improved into 
v + 1 :::;; 3i (N - I)t. 

The {ak } are N fixed points, chosen so that their 
minimal separation is kept fixed: 

lak - all ~ I, Vk, I, (28) 

and tp is a continuous function vanishing outside of a 
sphere with radius i. Now, 

('F/, H'F') = A,2N(1i2/2m)rJ. - A(iGm2) ! f3kl' (29) 
k<f.1 

where 

rJ. = JIV'P12 d3r, 

f3kt = JJ[I'Pk(r)tpt(r')1
2 

-_ __ d3r d3r' 
- 'Pir)'Pk(r')'PI(r)'Pt(r')] I 'I (30) 

r-r 

Due to the support property of 'P, however, the 
exchange term in f3k! vanishes. On the other hand, rJ. 

is maximized for cp(m)(r) Xl sin (21Tr), giving 

rJ.(m) = 41T2, 

f3k7) = lak - art, (31) 

because of the spherical symmetry of cp(m). Con­
sider now a cubic lattice with period I. The N points 
{ak } may be chosen to lie on this lattice within a cube 
with side (f-t - I), f-t being an integer, such that 

(f-t - 1)3 ::;; N::;; f-t3. (32) 

Then, the largest distance between any two points 
being along the diagonal, 

lak - atl ::;; J3(f-t - I) ::;; J?, N!, Vk, t. (33) 

From (29), (31),and (33), it follows that: 

('F/, Htf"/)::;; A221T2N(;,2jm) - A(2.j3)-Wi (N - I)Gm2• 

(34) 
Minimizing with respect to A, we obtaip. 

E~(N) ::;; -(3.251T2)-W!(N - 1)2(G2m5jIi2). (35) 

Corollary: Consider an arbitrary system of N 
identical fermions. The average squared momentum 
(p2) of a particle and the average inverse distance 
between two particles (Ir - r'I-I) obey the generalized 
uncertainty relation 

«(p2»t«(lr - r'I-1»-1 ~ i(N - 1)!Ii. (36) 

This expresses the physical nature of the exclusion 
principle as forbidding the simultaneous presence of 
more than one fermion in a volume with dimensions 
comparable to the de Broglie wavelength (see Sec. 11).8 

8 A similar uncertainty relation dealing with the average squared 
two-particle distance may be derived from a study of an N-particle 
system with two-body harmonic forces. See J.-M. Levy-Leblond, 
Phys. Letters 26A, 540 (1968). 
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Consider the fictitious Hamiltonian 

N p~ 1 
H ttct =!-2 - g !! (39) 

;=1 2 l~;<i~N Ir; - rjl 

From the lower bound (25), we have 

!:i (p2) _ UN(N _ 1)]g/\_1 _\/ 
2 Ir - r'l 

~ -iN(N - 1)t(g2/1i2). (40) 

For this inequality to hold true for any g, one must 
have (36).9 

Theorem 3: For a system of N different particles 
with maximal mass m and belonging to q species 
separately obeying the exclusion principle, the 
ground-state energy obeys 

_AqiN~(G2m5/1i2) ~ E~q)(N) ~ _BqiNt(G2m5/1i2). 

(41) 

This general theorem may be proved in a manner so 
similar to Theorem 2, as a particular case of it, that 
we shall skip its proof. 

To conclude this section, we note that our results 
are incomplete in two respects: 

(a) We did not attempt to optimize the bounds 
obtained, that is, to find the best possible constants. 
This might be interesting for (31), since this general 
inequality hopefully may find some applications. 

(b) We did not succeed in proving that the power 
laws obtained in Theorems I, 2, 3 represent the real 
asymptotic behavior of the ground-state energy. 
From Theorem 1, for instance, it is natural to con­
jecture that 

lim N-3Eo(N) = cst (42) 
N~oo 

for bosons, and similarly for Theorems 2 and 3. 

III. GRAVITATIONAL AND ELECTROSTATIC 
FORCES 

A. Heuristic Arguments 

The preceding theorems do not apply to the real 
world, since ordinary matter in bulk consists of 

8 Corresponding to Footnote 7, for N --->- 00, the coefficient! in 
(36) may be asymptotically improved in 2-i3-J- = 0.59 .... 

charged particles and its behavior depends on electro­
static forces in an essential way. We now extend our 
considerations to systems of particles where gravita­
tional and electrostatic forces operate simultaneously. 
Let us first qualitatively discuss the situation. Ordinary 
matter consists of electrons, light negatively-charged 
identical fermions, and nuclei, heavy positively­
charged particles with either statistics. The main 
effect of Coulomb forces is to ensure the most precise 
local neutrality of the system. Any deviation from an 
exact balance between both types of charge in any 
region of space would produce huge repulsive forces. 
As a result, the spatial distribution of the nuclei is 
much the same as that of the electrons. In particular, 
even when the nuclei obey Bose statistics, the ex­
clusion principle operating on the electrons to limit 
their density is "transmitted" to the nuclei by the 
interplay of Coulomb forces. Due to this adjustment 
of the spatial distributions for both types of particles, 
electrons and nuclei also have the same momentum 
distribution. The essential contribution to the kinetic 
energy then is furnished by the electrons, because 
of their much smaller mass. On the other hand, the 
gravitational potential energy comes essential1y from 
the mutual interaction between the heavier particles, 
the nuclei. 

Finally, at least for a large enough number of 
particles, the system practically behaves as a collec­
tion of N neutral identical fermions in gravitational 
interaction with the electron mass as their inertial 
mass and the average nuclear mass as their gravita­
tional mass. We are then led to expect an Nf behavior 
of the ground-state energy, despite the possible 
bosonic nature of the heavy particles. Of course, 
if N is sufficiently small, the system is dominated by 
the Coulomb forces and the ground-state energy 
is roughly a linear function of N(2). We comment on 
the transition from Coulomb-like to Newton-like 
behavior after a precise study of the problem. 

B. A Rigorous Result 

Theorem 4: For a system consisting of N identical 
fermions with mass m and charge (-e), and N 
particles with mass M, charge e, and unspecified 
statistics, the ground-state energy obeys 

-CN me
4

(1 + eNi GM
2
)2 

21i2 e2 

< E (N) < - DN me
4
(1 + dNi GM

2
)2 (43) 

- 0 - 21i2 e2 ' 

C, e, D, d being positive constants. 
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Proof" 
(a) Lower bound: The Hamiltonian of the system is 

with rather obvious notations. This may be written as 

H = He + H G , (45) 
where 

2 p2 ,2 

He=AI~+I-k +II_e-
2m 2M Iri - ril 

e'E' E,2 
- II Iri _ Rkl + II IRk _ RII' (46) 

p2 GM,2 
HG = (1 - A) L -' - L L . (47) 

2m Iri - ril 

In these definitions, A is a real number, 0 < A < 1, 
and we have introduced fictitious charges (e', £') and 
mass (M') by the formulas: 

or 

£'2 = e2 _ GM2, 

e'£' = e2 + GmM, 
e,2 _ GM,2 = e2 _ Gm2 , 

E' = e(l - GM2je2)!, 

e' = e(l - GM2je2r!(l + GmM/e2), 

M' = (M + m)(l - GM2je2r}. 

(48) 

These definitions require GM2 < e2, which is true, by 
and large, for ordinary matter, in which case we have, 
in effect, 

e'~£'~e, M'''''''M+m. (49) 

The physical interpretation is straightforward. H. is 
the Hamiltonian for a system of N fictitious fermions 
with mass A-1m and charge -e', and N particles 
with mass M and charge £', interacting via pure 
Coulomb forces. We know from the work by Dyson 
and Lenard,2 that 

(He) ;;::: -C:A-1N(me"j21i2) = -CA-W(me'j2Ji2) 

(50) 

for some positive constant C'. (We then define 
C = C'(e'je)'.] HG is the Hamiltonian for a system of 
N fictitious neutral fermions with inertial mass 
(1 - A)-1m, interacting via pure Newton forces with 
gravitational masses MI. Theorem 2, adapted to the 

present case with two types of masses, tells us that 

(HG ) ;;::: -A'(1 - A)-Wf(G2mM"jIi2) 

= -A(l - A)-Wf(GmM'jIi2). (51) 

The sum of the lower bounds for (He)' Eq. (50), 
and (HG ), Eg. (51), may now be maximized with 
respect to A. The best lower bound for (H) = (He) + 
(HG ) is obtained for 

Ao = [1 + cNi(GM2je2)]-I, (52) 

where c = (2A/a)!, and yields the lower bound in 
(43). 

(b) Upper bound: We apply the variational prin­
ciple to a wavefunction very similar to the one used 
in the proof of Theorem 2. 

C. Newton vs Coulomb 

Theorem 4 proves that for ordinary matter, the 
ground-state energy is linear in the number N of 
particles for N small enough, when Coulomb forces 
dominate, but varies as Nf for N so large that Newton 
forces become more important. The transition from 
the Coulomb zone to the Newton zone occurs around 
a critical number of particles 

(53) 

within a numerical coefficient, the value of which we 
ignore. It is clear a priori that Nc must be a function of 
e2jGM2, the dimensionless number which character­
izes the relative intensity of Coulomb and Newton 
forces. However, to obtain the exponent t it was 
necessary to solve the saturation problem for gravita­
tional forces. This result can also be interpreted in a 
very naive way as follows: Let ro be the average 
nearest-neighbor distance between the N particles with 
mass M and charge e. The mean distance between 
any two particles then is of order Nlro and the 
gravitational energy is estimated as 

(54) 

while the Coulomb energy, due to the self-screening 
property of electrostatic interactions,2 is of order 

(55) 

The two contributions become comparable for the 
critical number of particles N c ' Eg. (53), already 
obtained. This argument also shows that the estimate 
(53) remains valid for ordinary matter, consisting of 
atoms with arbitrary charge and mass numbers 
(Z, A), provided M is interpreted as the total atom 
mass. Nc should then be viewed as the number of 
atoms above which the cohesive properties of matter 
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are essentially due to the gravitational pull rather 
than to Coulomb forces. At that stage, it is only the 
interatomic bonds which are disrupted by the gravita­
tional forces. A second critical number of atoms N; 
may be defined which corresponds to the gravitational 
potential energy overcoming the intra-atomic Coulomb 
energy of matter. For (Z, A) atoms with mass M, 
an argument similar to those already presented yields 

A heuristic evaluation of the ground-state energy may 
be done as in Sec. I. Calling P the average momentum 
of a particle, one has 

The minimal value is reached for 

Po ,...., me(N/Nr)i[1 - (N/Nr)~]-t (61) 

(56) and is given by 

For most solid matter, the composition is ironlike, 
with Z ~ 25, M ~ 10-25 kg. This gives critical masses 
.A(,c ~ 1023 - 1024 kg and .A(,: ~ 1028 - 1029 kg. It is 
gratifying to check that the masses of Earth-like 
planets (composed of such material) are in the 
vicinity of 1024 kg. Indeed, we know gravitational and 
Coulomb cohesive forces both to be important for 
their internal structure. Similar remarks could be 
made for hydrogen-composed planets like Jupiter. 

D. The SemireJativistic Case: White Dwarf Stars 

We have shown that for N large enough, a system 
consisting of N electrons and N protons essentially 
behaves as a system of N identical fermions with 
mertial mass m and gravitational mass M, governed 
by an effective Hamiltonian 

Ho = L P; - L L GM2. (57) 
2m Iri - rjl 

In the ground state, the average momentum of these 
particles is of order 

(58) 

For N sufficiently large so that p ~ me, the electrons 
can no longer be treated as nonrelativistic and must 
be endowed with the correct relativistic energy­
momentum relationship. No question arises at that 
stage for the positive particles, much heavier, so that, 
with the same average momentum, they still behave 
nonrelativistically. Nor does the potential energy need 
to be modified since it is mostly due, by and large, 
to the mutual interaction of these heavy particles. 
Only the kinetic energy of the electrons, that is the 
first term of the total Hamiltonian (44), must be 
changed. As before, the Coulomb energy essentially 
ensures the local neutrality of the system, for which a 
semirelativistic effective Hamiltonian may be written 
similarly to, and in place of, (57): 

H'a = L (p~C2 + m2c4)t - L L GM2/1ri - r;l. (59) 

where 
(63) 

We see that the binding energy, in this semirelativistic 
region, increases even faster with N. Above the critical 
number of particles N r , the Hamiltonian (59) is no 
longer bounded from below and the system faces an 
unescapable collapse. This catastrophy is readily 
perceived on the ultrarelativistic approximation for 
E'(N); when p""" me, the estimate (60) may be re­
written as 

E'(N) ~ N[1 - (N/Nr)i]pe. (64) 

For N> N" this negative quantity can be made as 
large as desired by choosing a high enough momen­
tum p. These results may be derived in a rigorous way 
by using the variational principle to obtain an upper 
bound for the energy of the considered system. We 
thus prove: 

Theorem 5: The Hamiltonian for a system con­
sisting of N negative "light" fermions and N positive 
particles with mass M, interacting via Newton and 
Coulomb forces, is not bounded from below for 
N > a(2Iie/G M2)i, where a is some numerical 
constant. 

This situation is illustrated by the white dwarf 
stars, where the pressure of the degenerate electron 
gas (the kinetic energy of the electrons) cannot 
balance the gravitational pull if the total mass is 
higher than the so-called "Chandrasekhar limit" 
which is precisely given, within a numerical coefficie~t, 
by Eq. (63).10 This limit, which holds for any system 
of cold matter, has been derived and estimated here 
right from the first principles, without using any 
statistical or thermodynamic argument. In fact, this 

10 S. Chandr~sekhar, Monthly Notices Roy. Astron. Soc. 91, 456 
(1931). See, for Instance, S. Chandrasekhar, Introduction to the Study 
of Stellar Structure (The University of Chicago Press, Chicago, 
1939), or E. Schatzman, White Dwarfs (Interscience Publishers, Inc., 
New York, 1958). 
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approach merely is a rigorous form of the original 
discussion by Landau, who first showed the existence 
of such a limit. ll 

The present considerations, of course, do not apply 
to ordinary stars where radiation pressure, a typically 
relativistic electromagnetic effect, holds the system in 
equilibrium against gravitational collapse. They 
cannot be generalized either to systems where the 
heavy particles in turn become degenerate and where 

11 L. Landau, Phys. Z. Sowjetunion I, 285 (1932), reprinted in 
Collected Papers of L. D. Landau, D. ter Haar, Ed. (Pergamon 
Press, Inc., New York, 1965), p. 60. 
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other forces (strong, weak) enter the picture, such as 
in neutron stars, and/or where a relativistic treatment 
of the gravitational interaction itself becomes neces­
sary.12 
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By explicit construction it is shown how to extend zero-mass, discrete spin representations of the 
Poincare group to corresponding representations of the conformal group of Minkowski space. 

It is weU known that relativistic wave equations 
for zero mass are invariant under transformation of 
the conformal group SO(4,2) of Minkowski space. 
This result, first discovered for the Maxwell's equa­
tions/ was subsequently extended to other zero-mass 
relativistic wave equations.2 Some time ago, Grossa 

analyzed this situation in light of the Wigner theo­
rem,4 which states the complete equivalence between 
the Lorentz invariance of a quantum-mechanical 
system and the existence of a unitary, irreducible 
representation of Poincare group on the Hilbert space 
of that quantum system. Specifically, Gross proved 
that solutions of Maxwell's equations provide unitary 
representations of the conformal group of Minkowski 
space and then extended this result to other massless 
relativistic equations using the Bargmann-Wigner5 

description of particles of zero mass and discrete spin. 
In other words, the zero-mass, discrete spin repre­
sentation of the Poincare group can be extended to 
provide a representation of the conformal group. 
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We have re-examined this problem and found a rather 
elementary proof of this result. This is achieved by 
avoiding the explicit use of the Bargmann-Wigner 
method which for the massless case introduces a 
certain redundancy of description (which is to be then 
eliminated by imposing subsidiary conditions) and 
using instead an explicit realization of the infinitesimal 
generators of Poincare group via one-component 
wavefunctions given by Lomont and Moses.6 

We want to prove the following theorem: Any 
zero-mass, discrete spin representation of Poincare 
group automatically admits a unitary representation 
of conformal group SO(4, 2). We proceed as follows. 
First, the commutation relations of the 15 infinitesimal 
generators of the Lie algebra of conformal group are 
given by' 

[M,.., M).a] 

= i(gv).Mlla - gvaMIl). - gll).Mwt + gllttMv)), (la) 

[Mllv,P).] = i(gv).P,. - gll).P')' (lb) 
[PIl , Pv] = 0, (tc) 

[Mil v , KAJ = i(g.AK,. - gIlAK.), (ld) 

[KIl , K.1 = 0, (le) 
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approach merely is a rigorous form of the original 
discussion by Landau, who first showed the existence 
of such a limit. ll 

The present considerations, of course, do not apply 
to ordinary stars where radiation pressure, a typically 
relativistic electromagnetic effect, holds the system in 
equilibrium against gravitational collapse. They 
cannot be generalized either to systems where the 
heavy particles in turn become degenerate and where 

11 L. Landau, Phys. Z. Sowjetunion I, 285 (1932), reprinted in 
Collected Papers of L. D. Landau, D. ter Haar, Ed. (Pergamon 
Press, Inc., New York, 1965), p. 60. 
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other forces (strong, weak) enter the picture, such as 
in neutron stars, and/or where a relativistic treatment 
of the gravitational interaction itself becomes neces­
sary.12 
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[K!" Pvl = 2i(g!'vD - M!'v), 

[M!,v, Dl = 0, 

[D, P!'l = iP!" 

[D, K!'l = -iK!'. 

(If) 

(I g) 

(lh) 

(Ii) 

The metric chosen is goo = 1, gn = g22 = g33 = -1, 
gu = 0 otherwise. The 10 generators P!, and M!'v 
(= -Mv!') correspond to the Poincare group, which 
is a subgroup of SO(4, 2). Let us now consider the 
zero-mass, discrete spin representation of Poincare 
group which is characterized by P! = 0, W!' = AP!'; 
W!' (= -iE!,v;.aMvAP.,) being the Pauli-Lubanski oper­
ator and A the helicity. We do not concern ourselves 
with the zero-mass, continuous spin representations 
P! = 0, W! > 0 in this paper. An explicit form of 
realizations of the infinitesimal generators for mass­
less, discrete spin is given in Ref. 6. Consider a space 
V of complex functionsj(p, A), where p = (PI ,P2 ,P3) 
and the range of each variable Pi extends over the 
entire real axis. The value of A, which includes the 
sign, is helicity for spin IAI and is fixed. Then the form 
of infinitesimal generators in V is given by6 

Pof(p, A) = pf(p, A), 

Pd(p, A) = pd(p, A); P = (p~ + p~ + p~)t, (2a) 

M . ~ API 
1 = -IE1ikPiuk + --, 

P + P3 

. ~ AP2 
M2 = -IE2ikPiuk + ---, 

P + Pa 

Ma = -iEaikPiOk + A, 

N 1 = -ip01-~' 
P + Pa 

N . ~ API 
2 = -lpu2 + --, 

P +Pa 

(2b) 

(2c) 

(2d) 

(2e) 

(2f) 

(2g) 

In the above, the usual notations Mti = EUkMk and 
Ni = MOi (i = 1, 2, 3) have been used and, further­
more, 0i denotes O/OPi and repeated indices implies 
summation. The scalar product in V is defined as 

(f(1),J(2) = f d:P ll)*(p, A)f2)(p, A). (3) 

With respect to the above scalar product operators, 
M!'v and P!, are Hermitian. We are now in a position 
to formulate our problem mathematically. To prove 
the desired theorem we have to be able to show that 
there exist linear operators in space V with correct 
commutation properties which can be identified with 
generators K!, and D. The proof is by explicit con­
struction. We write down the form of these operators 
in V: 

D = i(p . 0 + 1), (4a) 

K ~2 2 .' ( P2 ~ PI ~) 2A 
2 

0= -pu + IA --U1---U2 +--, 
P + Pa P + Pa P + Pa 

(4b) 

Kl = 201 + 2(p· 0)01 - P102 + 2iA(~ Oa - ( 2), 
P + Pa 

(4c) 

K2 = 202 + 2(p· 0)02 - P202 + 2iA(01 - ~ oa), 
P + Pa 

Ka = 20a + 2(p . O)Oa - Pa02 

+ 2iA(~02 - ~(1) 
P + Pa P + Pa 

(4d) 

P + Pa 
(4e) 

In Eq. (4), we have used the abbreviations 02 = 
o~ + 0; + o~ and P . 0 = PlOl + P202 + Paoa. It may 
be verified by direct calculation that commutation 
relations (ld)-(li) are satisfied by the operators given 
by Eq. (4). With respect to the scalar product (3), 
these operators are Hermitian. This completes the 
proof. We may finally note that the limiting case 
A = 0 of Eq. (4) yields the known formS of operators 
D and K!, for that special case. 
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We consider series of Stieltjes with a nonzero radius of convergence R. We establish by way of Pade 
approximants the allowed range of values for such functions at any point in the cut (- 00 < z ::;; - R) 
complex plane when a finite number of Taylor-series coefficients are known. The previous results for z 
real and positive are sharpened. We investigate the fitting problem and again give error bounds through­
out the cut complex plane and we give necessary and sufficient conditions that the set of values fitted be 
values of a series of Stieltjes with radius of convergence at least R. 

1. INTRODUCTION 

Commonl has recently proposed the following 
interesting problem: Suppose f(z) is a member of the 
class of functions called series of Stieltjes (defined in 
Sec. 2) with nonzero radius of convergence. From a 
finite number only of known Taylor-series coefficients, 
what bounds can be placed on the error of the [N, M] 
Pade approximant at any point in the complex z plane? 
The [N, M] Pade approximant to a function2 

<Xl 

f(z) = !a,z' 
,=0 

is defined by the equations 

f(z)PM(z) - QN(z) = O(zM+N+1), 

(1.1) 

QNCz) = 1.0, (1.2) 

where PM and QN are polynomials of degree at most 
M and N, respectively. The totality of Pade appro xi­
mants is arranged in a 2-dimensional, semi-infinite 
table. The entries in the first row comprise the partial 
sums of the Taylor series and are denoted [0, 0], 
[0, 1], [0,2],···. The second row has a linear 
denominator and is denoted [1, 0], [1, 1], [1, 2], 
[1, 3], ... , and so forth. The genesis of the recent 
interest in Common's problem lies in the application 
of Pade-approximant techniques to partial-wave 
integral equations. Mason3 has shown that the s-wave 
scattering amplitude for two spinless particles, when 
considered as a function of the strength of the left-hand 
cut discontinuity, is related to a series of Stieltjes and 
hence the Pade can be used as an alternative to the 
Nj D method.4 His result is particularly desirable 
because, for series of Stieltjes, one can prove when 

• Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

1 A. K. Common, J. Math. Phys. 9, 32 (1968). 
• G. A. Baker, Jr., Advan. Theoret. Phys. 1, 1 (1965). 
3 D. Mason, J. Math. Phys. 8, 512 (1967). 
• G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 

z is real and positive that 

[N, N - 1] ~f(z) ~ [N, N]. (1.3) 

For z < 0, all the Pade approximants form lower 
bounds. Commonl points out that it is also desirable 
to have error bounds on the negative real axis as well 
[and more generally throughout the cut (- 00 < 
z ~ -R) complex plane] and does obtain bounds on 
the negative real axis and in part of the complex plane. 

In this paper we give the solution to the Commonl 

problem. Through the use of Pade approximants we 
prove that given any point z in the cut (- 00 < z ~ 
- R) complex plane, the first p coefficients determine 
a lens-shape range of possible values for fez). These 
results are the best possible in the sense that any point 
of this range can actually be attained by some member 
of the class of functions considered. 

We show that the knowledge that fez) has a radius 
of convergence of at least R allows us to sharpen (1.3) 
for positive real z. 

We have also investigated the fitting problem, i.e., 
determining Pade approximants from the values of 
fez) at a set of points rather than from a sequence of 
derivatives. We derive necessary and sufficient con­
ditions that the {fez,)} are values of a series of Stieltjes 
with a radius of convergence at least R and value 
ranges (error bounds) for fez) with the values {f(z,), 
j = 0, 1,'" ,p} for z in the cut (-00 < z ~ -R) 
complex plane. 

2. RANGE OF A RESTRICTED SERIES OF 
STIELTJES 

In this section we show how to compute the possible 
values f(z) of any series of Stieltjes at any point z in the 
cut (- 00 ~ z ~ - R) complex z plane, when we are 
given the first n terms of the Taylor-series development 
of f(z) about z = ° and the information that this 
series has a radius of convergence of at least R. This 
range for fez) is simply obtained in terms of adjacent 
Pade approximants in the Pade table. 

814 
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By definition, 
00 

fez) = !f;( -z); (2.1) 
;~o 

is a series of Stieltjes, if and only if there is a bounded, 
nondecreasing function cp(u) taking on infinitely many 
values in the interval ° ~ u < 00, such that 

If we introduce the determinants 

D(m, n) = det 

fm+! 

fm+2 

fm+n 

fm+n+l 

fm+n fm+n+l fm+2n 

, (2.3) 

then this definition is equivalent2 to the conditions 

D(O, n) > 0, D(1, n) > 0, n = 0, 1,2,' . '. (2.4) 

All the D(m, n) are actually positive,2 but we only 
require m = 0, 1 to prove form (2.2). 

The first step in our procedure is to use the known 
result that, if fez) is a series of Stieltjes of radius of 
convergence at least R, then g(z), defined by 

fe z) = fo 
1 + zg(z) , 

(2.5) 

is also. That this is so can be seen formally through 
the use of Hadamard's5 theorem on determinants. 
If Dg(m, n) are the determinants for g(z) analogous to 
(2.3) for f(z) , then 

Dg{O, p) = D(l, p)/f~V+4 > 0, 

Dg(1, p) = D(O, p + 1)/f~V+5 > 0, (2.6) 

which via (2.4) establishes that g(z) is a series of 
Stieltjes. As fez) is assumed to have a radius of con­
vergence R, it has the integral representation2 

l l/R dcp(u) 
fez) = --. 

o 1 + uz 
(2.7) 

From this representation it is clear thatf(z) is regular 
in the cut plane ( - 00 ~ z ~ - R). Except for possible 
polar singularities, g(z) must be also, by (2.5). How­
ever, if g(z) had a pole, thenf(z) would vanish; but 
it follows easily from (2.7) that fez) ¢ ° in the cut z 
plane. Thus g(z) also has a radius of convergence of at 

• J. Hadamard, J. Math. (4) 8, 101 (1892). 

least R. As 

- [fez) - fo + f1z - f2z2 + ... - /n-l( - zt-l] 
( _Z)n 

=ll/R un dcp(u) 

o 1 + uz 

is a series of Stieltjes, then g(z), defined by 

is also a series of Stieltjes. 

(2.8) 

(2.9) 

As g(z) in Eq. (2.5) is a member of the same class as 
f(z) , namely, a series of Stieltjes of radius of con­
vergence at least R, we are free to iterate that form, 
starting either with (2.5) or (2.9). When we do, we 
obtain 

fez) = fo 

1 + zal 

1 + ___ z-,a2,,--_ 

1+ 

1 + zav 

1 + zhiz), (2.10) 

where hv(z) is again a series of Stieltjes with radius of 
convergence at least R. Equation (2.10) may be re­
expressed as 

fez) = Aiz) + zhiz)Av_I(Z)CV , (2.11) 
Biz) + zhiz)Bv_I(Z)Cv 

where the A's and B's are polynomials in z, and the 
Cv are constants. That the form is correct can be seen 
by setting hv = ° and 00 in (2.10) and noting that we 
obtain the pth and (p - l)th expressions, respectively. 
Wall6 shows (Theorems 96.1 and 97.1) that the frac­
tions Av(z)jBv(z) are in fact Pade approximants and 
fill a stairlike sequence in the Pade table, i.e., [0, 0], 
[1,0], [l, 1], [2, 1], [2,2], .... If we start with (2.9) 
instead of (2.5), we obtain the sequence [0, n], [1, n], 
[1, n + 1], [2, n + 1], [2, n + 2],· .. , in an exactly 
analogous manner. 

Returning to Eq. (2.5), we note one further restric­
tion that g(z) must satisfy, namely, as g(z) is mono­
tonic in the range - R ~ z ~ 0, we must have 

lim zg(z) ~ 1, (2.12) 
z-+-R 

• H. S. Wall, Analytic Theory of Continued Fractions (D. Van 
Nostrand, Inc., Princeton, N.J., 1948). 
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in order thatf(z) be free of singularities in this range. 
Therefore, 

g(-R) ~ R-l. (2.13) 

As we iterate (2.5), the hl'(z) obtained will be similarly 
restricted, although the bound is now a function of all 
the constants in (2.10) which may be defined from6 

the first p coefficients of the power series for f(z). We 
choose to redefine hl'(z), so that 

(2.14) 

and absorb the change in normalization in the 
Cl" We may now easily solve for Cl' from (2.11), 
using the critical equation which makes z = - R a 
pole off(z). Thus, 

Cl' = Bl'( -R)/Bl'- l ( -R). (2.15) 

Having established relation (2.11) subject to (2.14) 
and (2.15), we see that the range of f(z) , given the 
first p coefficients and given that it is a series of 
Stieltjes with radius of convergence of at least R, is 
just the linear fractional transformation oft~e range of 
hl'(z). The reader will note that this portion of our 
discussion has followed Gordon's' adaption of the 
ideas of Hamburger,S although with different em­
phasis. 

We now turn our attention to the problem of 
computing the range of hiz), subject to (2.14). 
Now we can represent 

hl'(z) = (l/R dtpiu) (2.16) 
Jo 1 + uz 

which evaluated at z = - R is 

By (2.14'), 

h (-R) = (l/R dtpl'(u) <!. 
l' Jo 1 - Ru - R 

dwl'(u) = R dtpiu) 
1- Ru 

is also an allowable measure with 

(l/R 
Jo dwl'(u) ~ 1. 

Hence we may rewrite 

hl'(z) =! {l/R (1 - Ru) dwiu) , 
R Jo 1 + uz 

(2.14') 

(2.17) 

(2.18) 

(2.19) 

with dwl' an arbitrary, non-negative-definite, nor­
malized measure. It follows at once from (2.19) that 

1 R. G. Gordon, J. Math. Phys. 9, 1087 (1968). 
8 H. Hamburger, Math. Ann. 81, 235 (1920); 82, 120, 168 (1921), 

as reviewed by J. A. Shahat and J. D. Tamarkin, Mathematical 
Surveys, Number I: The Problem of Moments (American Mathe­
matical Society, New York, 1943). 

FIG. I. The shaded 
region is the allowed 
range of values of 
hv(z) for the case z = 
-2R + iR. Note that 
the circle is tangent to 
the line 0, R + z·. 

if HI and H2 are possible values of hl'(z) then a.Hl + 
{l - a.)H2 (0 ~ a. ~ 1) are also, as if wand w' are 
allowed measures in (2.19) then so is a.w + (1 - a.)w'. 
Consequently, the range of hl'(z) is a convex region. 
The integrand of (2.19) is a weighted sum of 

1. (1 - RU) 0 < u < 1. 
R 1 + uz' - - R' 

(2.20) 

which is a linear fractional transformation of the seg­
ment of the u axis. By a well-known property of 
linear fractional transformations,9 the result is the arc 
of a circle. Hence the range of hl'(z) is the convex hull 
of this arc. We have illustrated (Fig. 1) the sample case 
z = - 2R + iR. It is tangent, at the origin to a line 
through R + z*. The vertical height can be easily 
calculated to be 

o ~ -1m hiz) ~ y , 
2R{[(R + X)2 + ill + (R + x)} 

(2.21) 

where x and yare the real and imaginary parts of z. 
The range is the complete, convex, lens-shaped region 
described above, since any point on the circular arc 
can be obtained for dwl'(u) = d(u - uo) du, where Uo 
is appropriately selected. Any point on the real-axis 
portion of the boundary can be obtained as dw(u) = 
hl'(z)(j(u) duo All points in the interior can be obtained 
in an infinite number of ways as linear combinations 
of boundary points. The range of fez) is therefore the 
map of this lens-shaped region under (2.11). The 
resulting range Fl'(z) will again be a lens-shaped9 

region, although not necessarily convex. By the 
method of construction, we have 

where c means "contained in." We expect the se­
quence of ranges based on (2.5) to be superior (for the 
same number of coefficients) to those based on (2.9) 
with n > 0, as they maintain an additional provable 
requirement that fez) be bounded at infinity (away 

• A linear fractional transformation maps the family of circles and 
straight lines into itself. See, for example, E. T. Copson, An Intro­
duction to the Theory of Functions of a Complex Variable (Oxford 
University Press, London, 1948), p. 11, Ex. 6. 
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from the cut). We now see that this is indeed the case 
and, hence, Fp(z) is the best possible bound for the 
values of fez) based on p coefficients and the assump­
tion that the radius of convergence is at least R. 

In order to discuss the relations between the possible 
ranges for fez) based on (2.9) for different values of n, 
we introduce a range for every nearest-neighbor pair 

in the (upper-half) Pade table. Following the notation 
of Chap. II, Sec. B of our review article2 for the 
numerators and denominators of Pade approximants 

. p}p(z) 
[N, N + J](z) = QW(z) , (2.23) 

we may write out explicitly, for the even 

p~)(Z)Q~-l)( -R) + Zh2m.n(Z)p~-1)(z)Q~)( -R) 

fez) = Q~)(Z)Q~-l)( -R) + Zh2m.n(Z)Q~-1)(z)Q~)( -R) 
(2.24) 

and odd 
fez) = p~;f)(z)Q~)( -R) + Zh2m+l.iz)P~)(z)Q~+i)(-R) 

Q~;f)(z)Q~)( -R) + Zh2m+l.n(Z)Q~)(z)Q~;f)( -R) 
(2.25) 

values of p, the formulas relatingf(z) to h(z). The map 
of the range of the h(z) found by considering (2.20) 
defines the set of ranges Fp.n{z). Equation (2.22) 
becomes, when we start with (2.9), for n = 0, 1, 
2,'" , 

fez) E Fp.n{z) c:: Fp_1.n(z) c:: ••. c:: F1.n(z), 

n = 0, 1,2,···. (2.26) 

These relations generalize the inequalities (II.19a) 
and (II.19c) of Theorem 6 of our review article2 to 
arbitrary values of z in the cut complex plane. To 

In a manner exactly analogous to the derivation of 
Eqs. (ILl8) and (11.20) of Ref. 2, we may show that 

P<';:;;)(z)Q<';:+1)(z) _ p<';:+1)(z)Q<::;:'(z) 

= (_z)2m+n+2D2(1 + n, m + 1), (2.30a) 

P<';:;;)(z)Q<';:)(z) - P<';:)(z)Q<::;:'(z) 

= (_z)2m+n+lD(n, m)D(1 + n, m), (2.30b) 

p~+1)(z)Q~){z) - p~){z)Q~+1){z) 

= (_z)2m+n+1D{2 + n, m - 1)D(1 + n, m). 

(2.30c) 

If we use (2.30) to simplify (2.29) we obtain 

(7) [D(1 + n, 1 + m)]2 
; = - D(2 + n, m - 1)D{1 + n, m) 

+ D(n, m) ((1) (2.31) 
D(2 + n, m - 1) ; , 

which is a linear relationship between the points of 

complete the picture we need to examine the relations 
between F for different values of n. We first consider 
the possible relation 

F2m+1.n(Z) c:: F2m •n+1(z), 

To this end we define 

7 = zh2m+1.n(z)Q<::;:)( -R)/Q~)( -R), 

(2.27) 

(] = Zh2m.n+1(Z)Q~+1)( -R)/Q~)( -R). (2.28) 

If we now solve for 7 in terms of (] from Eqs. (2.24) 
and (2.25) we get 

(2.29) 

F2m.n+1 and F2m+1.n' Since (2.31) is a linear trans­
formation, it is automatically a conformal one. As 
the constants are real, the real-axis portion of the 
boundary to the range of ((]/z) maps into a portion of 
the real axis of the Hz) plane. The origin in the «(]/z) 
plane maps into a real negative point in the (7/Z) plane. 
As Eq. (2.29) is equivalent to (2.31), we may obtain the 
value of 7 which corresponds to the value of (] when 
h2m •n+1(z) = l/R by substituting into (2.29) for the 
particular value of z = - R. This yields 

(2.32) 

which implies the corresponding mapped value 

h2m+1.n( -R) = l/R, (2.33) 

which is the same maximum value that we have 
previously derived. As the map of the «(1/z)-plane, 
straight-line portion of the boundary of the range 
includes all of the straight-line portion of the boundary 
of the range in the (7/Z) plane, and as the transforma­
tion is a linear, shape-preserving one, we see that the 
curved boundary lies outside the boundary for the 
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FIG. 2. The shaded 
area is the map of the 
allowed region in the 
(a/z) plane. The cross­
hatched area is the 
region in the (-r/z) 
plane. 

region in the (T/Z) plane. (See Fig. 2). Thus we have 
proved (2.27). The similar relation for F2m•n can be 
proven in an exactly analogous manner, except that 
the map of the (a/z)-plane range has the curved side 
in common with the (T/z)-plane range instead of the 
straight side. We may thus supplement the inclusion 
relations (2.26) with the inclusion relations 

Fp.n(z) c F1>-l.n+l(Z). (2.34) 

Taken together these imply that 

fez) E F1>.o(z) (2.35) 

is the best possible bound for fez) which we may form 
from the coefficients through z1>, where the F".o(z) 
are defined by (2.24) and (2.25) with the aforemen­
tioned permissible range for the h's as illustrated in 
Fig. 1, and defined as the convex hull of Eq. (2.20). 

The best bounds in the cut z plane (- 00 < z ~ 0) 
for the problem (2.2) can be obtained as a special case 
of our results. This represents the limiting case where 
R --+- O. The formulas (2.24) and (2.25) remain valid. 
By definition Q~:)(O) = D(1 + n, m - 1) for all m, n. 
The range for h1>.n follows directly as the limit as 
R --+- 0 of (2.20). It is the complete angular wedge 
bounded by the real axis and the ray through R + z*. 
The sequence with n = 0 is again the best one. As a 
wedge is merely a lens-shaped region with one vertex 
at infinity, the ranges F1>.n for the value of fez) are 
again lens-shaped regions. 

The problem where 
[+00 

fi = J-oo u
i 

drp(u) (2.36) 

was completely treated by HamburgerS and Gordon. 7 

Here the range of values becomes the entire half-plane 
1m (h(z» 1m (z) < O. The map of this is a circle, which 
is a degenerate lens in which the two sides meet at a 
straight angle. 

We consider one further case. 
If the problem is defined by 

J
1tR 

fi = u i dcp(u) 
-l/S 

(2.37) 

and neither R nor S is zero, then we may show 
(Chap. IV, Sec. A in Ref. 2) that both 

R + S ( RS~ ) 
S + R(1 + ~) f S + R(1 + ~) (2.38a) 

R + S ( -RSg ) 
R + S(1 + ~) f R + S(1 + g) 

(2.38b) 

are series of Stieltjes with a radius of convergence of 
unity. Thus the results of this section apply to them. 
The limits R --+- 0 and S--+-O may be treated by letting 
'YJ = Rg in (2.38a) and 'YJ = Sg in (2.38b), respectively, 
which yields 

S f( S'YJ ) 
S + 'YJ S + 'YJ (2.39a) 

_R_f( -R'YJ) (2.39b) 
R+'YJ R+'YJ 

as series of Stieltjes of form (2.2). Hence the results 
discussed above apply to these cases also. 

3. SPECIALIZATION TO REAL ARGUMENT 

When the best possible bounds derived in the 
previous section are specialized to real values of z, 
the lens-shaped region collapses into a real interval. 
The restriction that fez) has a radius of convergence of 
at least R enables us to derive sharper bounds than 
has been possible heretofore. For real z, it follows 
from (2.20) that 

o ~ h(z) ~ I/R. (3.1) 

Hence, for z > 0, the inclusion relation (2.35) be­
comes the inequalities 

p~)(Z)Q~l)( -R) + (Z/R)p~l)(Z)Q~)( -R) 

Q~)(z)Q~lI( -R) + (z/R)p~lI(z)Q~)( -R) 

or ~ fez) ~ em, n] (3.2) 

[m + 1, m] ~f(z) 

< 
p:;~i(z)Q~)( -R) + (z/R)P~)(z)Q:;~i(-R) 

(3.3) 
- Q~~i(z)Q~)( -R) + (z/R)Q~)(z)Q~i( -R) . 

Equation (3.2) is applicable when the last available 
coefficient is for z2m and (3.3) is applicable for z2mH. 
When - R < z < 0, the sense of the inequality signs 
in (3.2) reverses, and that in (3.3) remains unchanged. 

These bounds (z > 0) reduce to the previous results 
[(II.19c) of Ref. 2]: 

[N, N - 1] ~f(z) ~ [N, N] (3.4) 

in the limit as (z/ R) --+- 00 (R --+- 0). For (z/ R) finite, a 
better bound is provided, either upper, if the last 
available coefficient is for z2mH, or lower, if it is 
for z2m. 

For, z < 0, as has been pointed out by Common,l 
both the [N, N] and [N, N - 1] Pade approximants 
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TABLE I. f(z) and its approximants (values are multiplied by 
102

). 

z 

-0.6 
-0.8 
-0.9 

[3,2] 

8.8036 
12.168 
15.829 

f(z) 

8.8051 
12.216 
16.213 

max {F •. o(z)} 

8.8072 
12.289 
16.881 

(3,2) 

8.8081 
12.448 
19.770 

form lower bounds to fez). He has introduced a set of 
modified approximants which provide upper bounds 
in this region (-R ::;; z ::;; 0). They are defined as 
follows: Let fez) be a series of Stieltjes 

00 

fez) = !fl-z)i (3.5) 
i=O 

and define 
k =_1 {..iJL_ f } 

i j + 1 Ri+l HI , 
(3.6) 

00 

K(z) = !kl-z)i, (3.7) 
;=0 

then 

fez) = [(foR)/(R + z) + z[zK'(z) + K(z)]. (3.8) 

Common proves that K(z) is a series of Stieltjes with 
radius of convergence of at least R. Common's 
approximants, which he denotes by (M, N), consist 
of replacing K(z) by its [M, N] Pade approximant. 
He proves, among other things, that 

(N, N - 1) ~ (N, N) ~ (N + 1, N) ~ fez) 

~ [N + 1, N] ~ [N, N] ~ [N, N - 1] (3.9) 

over the range - R ::;; z ::;; O. He has illustrated his 
results for the example 

fez) = 1.. (1 u! du 
47T Jo 1 + zu 

__ 1 {I __ 1_ log [1 + (-Z)!]} 
- 27TZ 2( -z)! 1 - (-z)! 

= 2
1
7TG - ~ + ~ - ~3 + . . . . (3.10) 

It is interesting to compare them with our best possible 
results. We have done this briefly in Table I. The 
values of Common's. approximants are taken from 
his paper.l It will be observed that the best possible 
upper bounds are significantly closer than Common's 
approximants and for this example the function value 
lies in the central third of the allowed range. 

4. THE FITTING PROBLEM FOR A SERIES 
OF STIELTJES 

We consider here the problem of constructing the 
possible range of values of a restricted series of 
Stieltjes (radius of convergence of at least R) when 
we are given, not a set of derivatives at a single point, 

but a set of values at various points {f(zi); j = 1, 
2, ... , n}. We are able to treat this problem in a man­
ner quite similar to our treatment for the sequence­
of-derivatives problem. What emerges are error 
bounds for an interpolation formula closely similar to 
Thiele's reciprocal-difference interpolation formula. 10 

We first make the following observation. Let 

11'R dm(u) 
fez) = _'f'_; 

° 1 + uz 
(4.1) 

then, by the change of variables of integration (w real): 

v = u/(l + uw), (4.2) 
we have 

11'<R+W) (1 - vw) dq;[v/(1 - vw)] 
fez + w) = , (4.3) 

o 1 + zv 
which is, by its form, a series of Stieltjes in z, provided 
w > - R, with a radius of convergence of at least 
R + w. Consequently, by arguments exactly analogous 
to those of Sec. 2, if fez) is a series of Stieltjes and 
{Zj; j = 1, 2, ... , p} are points in the real line 
-R < z < +00, then 

f (z) = __ a-'o'----_ 
1 + (z - zO)al 

1 + (z - zp)gp+1(z) 

(4.4) 

defines gp(z) as a series of Stieltjes, provided the ap 
are selected so as to fit fez) at z = Zo, Zl, ••• , Zp . 
This is conveniently done through the relations 

go(z) = fez), 

() 
gp_l(Zp_l) - gp_l(Z) 

gp z = , 
(z - Zp_l)gp_l(Z) 

p ~ 1, 

then 
ap = gp(zp). 

Equation (4.4) may be re-expressed as 

fez) = A,,(z) + (z - z")g,,+b)A,,_l(Z)C,, 

B,,(z) + (z - zp)g"+1(z)Bp_1(z)C,, 

(4.5) 

(4.6) 

(4.7) 

where the A's and B's are polynomials in z which result 
in fitting Ap/Bp through (4.4)-(4.6) to the first 0 to 
p points, and the Cp are constants. That this form is 
correct may be seen by setting g,,+1(z) = 0 and 00 in 
(4.4), and noting that we obtain the pth and (p - l)th 

10 See, for example, L. M. Milne-Thomson, The Calculus of 
Finite Differences (The Macmillan Company, New York, 1951). 
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expressions respectively. Again, the function Ap(z)/ 
Bp(z) are rational fractions and the sequence of 
degrees of the numerator and denominator is the 
same as in the stair-step sequence [0, 0], [1, 0], [1, 1], 
[2, 1], [2,2], .... Let us change the normalization of 
gP+I(Z), absorbing this change by changing Cp 
correspondingly. We normalize gP+I(Z) as 

(R + zp)gp+I(-R)::; 1. (4.8) 

That gP+I( -R) is bounded follows, as it did in Sec. 2 
for hp( -R). If we consider gP+I(W + zp) = kp+I(W), 
then we have shown kp+l(W) to be a series of Stieltjes 
with radius of convergence at least R + zp. Hence 
the bounds on its range given by the convex hull of 
(2.20), where (R + zp) replaces R, are valid. We may 
evaluate Cp similarly, as before, obtaining 

fez) 

B p_1( -R)Ap(z) + (z - zp)gV+l(z)BP( -R)Av_1(z) 
= 

Bv- 1( -R)Bp(z) + (z - zv)gp+l(z)Bv_1(z)Bp(-R) 

(4.9) 

The range of fez) at any point in the cut (- 00 < 
z ::; - R) complex plane is a lens-shaped region which 
is the map under (4.9) of 

Range {gP+l(Z)} 

= convex hull [_1_ (1 - (R + Zv)U)J' (4.10) 
O:O;u:O;l/<R+zp ) R + Zv 1 + u(z - zp) 

This lens-shaped region reduces to an interval for Z 

real. This bound on the value off(Z) is the best possible, 
because we have shown in Sec. 2 that we can construct 
a series of Stieltjes of the required type to take on any 
value in the range given by (4.10). 

When the set {Zj} processes a limit point in the real 
line -R < Z < + 00, then the necessary and sufficient 
conditions that a set of values {f(Zj)} are values of a 
series of Stieltjes are that 

f(zv+I) E Fv(zv+l)' P = 0, 1, .. , , (4.11) 

where Fp(z) is the allowable range of fez) defined by 
(4.9) and (4.10), using the points Zo, Zl, ••• , ZV' To 
see that this result is so we note that by the above 
derivation, if fez) is a series of Stieltjes, then we have 
already proved that (4.11) must hold. On the other 
hand, if (4.11) holds we may construct a sequence of 
series of Stieltjes [Sv(z) = Ap(z)/Bv(z)] which agree 
with fez) at the points (zo, Zl, ••• ,zp). Since by 
arguments analogous to those of Sec. 2 we must have 

fez) E Fv(z) C Fv_1(z) C ••• C F1(z) C Fo(z); (4.12) 

as Fo(z) is uniformly bounded over any closed domain 
interior to the cut (- 00 < Z ::; - R) complex plane, 
so is every Sv(z), uniformly on p. We may therefore 

apply the Osgood-Vitali convergence theoremll to the 
sequence of analytic functions Sv(z).1t implies that the 
sequence Sp(z) constructed tends uniformly to an an­
alytic function in any closed domain interior to the cut 
complex plane. That this function is a series of Stielt­
jes can be seen by first noting that all the derivatives at 
a point (e.g., the origin) also converge by Weirstrass's 
theorem.12 Hence the determinantal conditions 

(4.13) 

satisfied by the Sv(z) also converge and hold in the 
limit as p tends to infinity. Thus the limiting function 
satisfies (4.13) as well and hence is a series of Stieitjes, 2 

as was to be shown. 
We remark that, in spite of the seemingly unsym­

metric method of construction of the function 
[Av(x)/Bv(x)], it does not, in fact, depend on the order, 
but only on which points are chosen at which to fit 
fez). This result is demonstrated by the solution to the 
fitting problem given by Muir,13 where he shows that 
the solution is always expressible in terms of the 
determinants 

1 Zo z~ Z~-l zgf(zo) 

1 Zl z; zr-1 z1f(Zl) 

Vq = det (4.14) 

1 Zv Z2 
v Z~-l ZU(Zl) 

and the van der Monde determinant, which is mani­
festly symmetric in the fitted points.lo 

We remark that it is clearly possible to combine the 
results of Sec. 2 and this section, so that a combination 
of values and successive derivatives at various points 
can be treated. 

Note Added in Proof' We wish to thank Dr. J. 
Holderman for drawing to our attention the work by 
Henrici et al. I 4.1S They have obtained a special case of 
our results for problem (2.2) (R = 0). They also show 
that the regions Fv(z) are convex. This result is also 
valid for our problem and has, as they point out, the 
important consequence that the diameter of the 
allowed region is bounded by a function K(Z) times 
the difference of the two Pade approximants. 

11 See, for example, H. Jeffreys and B. S. Jeffreys, Methods of 
Mathematical Physics (Cambridge University Press, London, 1950), 
Sec. 11.21. 

12 See, for example, Ref. 9, Sec. 5.2. 
13 T. Muir, A Treatise on the Theory of Determinants (revised by 

W. H. Metzler) (Dover Publications, Inc., New York, 1960), Sec. 
454. 

14 A. Pfluger and P. Henrici, in International Colloquium: Theory 
of Analytic Functions, M. A. Lavrentev, Ed. (Erivan, Russia, 1965), 
p.257. 

,. J. Gargantini and P. Henrici, Math. Computation 21,18 (1967). 
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.Ne~ criteria characterizing Slater determinants and quasiparticle vacuum states are obtained. These 
cntena are expressed as quadratic homogeneous equations in the coefficients of the development of the 
tria~ wavefun~tion in a ~asis ?f Slater determ!nants. ~ redefinition of quasiparticle vacuum states permits 
the mtroduc~lOn of quasipartIcle transformatIons which are more general than the generalized Bogoliubov 
transformations. 

1. INTRODUCTION 

In Hartree-Fock and Hartree-Bogoliubov methods 
applied to nuclear calculations, the expectation value 
(<I>I H 1<1»/(<1> I <1» of the Hamiltonian is expressed in 
terms of certain variational parameters which specify 
indirectly the trial wavefunction 1<1». The stationarity 
condition imposed on the expectation value is then 
supplemented by criteria imposed on the variational 
parameters which ensure that 1<1» is a Slater deter­
minant (SO) or a quasiparticle vacuum state (QPVS).1.2 

Two sets of variational parameters and corre­
sponding criteria were used until now in the literature. 
The first set of parameters is formed by the coefficients 
in the development of single-particle (quasiparticle) 
operators hi, hi specifying 1<1», in terms of fixed 
single-particle operators at, ai • The corresponding 
criterion for 1<1» being an SO (QPVS) is expressed 
by orthonormality (pseudo-orthonormality) condi­
tions imposed on these coefficients. The second 
set of parameters is formed by the elements Pij == 
(<I>I ajai 1<1» of the one-particle density matrix and 
Xii === (<1>1 aia; 1<1» of the pairing tensor. For this set, 
the criterion ensuring that 1<1» is an SO is expressed 
by the matrix equation p2 = P, and the criterion 
ensuring that 1<1» is a QPVS is expressed by the two 
matrix equations p2 - XX* = p and PX = Xp*. The re­
lations between the two sets of variational parameters 
and between the corresponding criteria were discussed 
by several authors.1-3 

In this paper, we develop new criteria for char­
acterizing a Slater determinant or a quasiparticle 
vacuum state in terms of a third set of possible 
variational parameters. This set consists of the 
coefficients in the development of the trial wave­
function in a basis of Slater determinants. The Slater 
determinants are constructed from a finite number of 

* Postdoctoral Fellow of the National Research Council of 
Canada. 

1M. Baranger, 1962 Cargese Lectures in Theoretical Physics 
(W. A. Benjamin, Inc., New York, 1963). 

1M. Baranger, Phys. Rev. 122,992 (1961). 
a W. H. Young, Phys. Rev. 131,476 (1963). 

given single-fermion states. The new criteria are 
expressed as sets of quadratic homogeneous equations 
in the coefficients of the trial wavefunction. To derive 
the criterion characterizing a QPVS we need to 
generalize the usual definitions of a QPVS. This is 
done by introducing quasiparticle transformations 
which are more general than the generalized Bogoliu­
bov transformations. The new transformations con­
serve fermion anticommutation relations, but may 
violate the relations of adjointness between creation 
and annihilation operators. The new criteria may 
prove useful in problems where the explicit expression 
of the trial wavefunction is needed, instead of inter­
mediate quantities such as the density matrix and the 
pairing tensor. This is the case, for instance, in some 
problems of neutron-proton correlations.4.5 

2. CRITERION FOR SLATER DETERMINANTS 

In this section, we derive the criterion characterizing 
a Slater determinant. We consider a finite number of 
given single-fermion states 

at 10), at 10), ••• , a! 10). (2.1) 

An arbitrary N-particle wavefunction 1<1» may be 
developed in the basis of Slater determinants con­
structed from the states (2.1) as follows: 

1<1» = ~~ Ci1i2 ... iNa~a~ ••• atv 10). (2.2) 
il<i2<"'<iN 

We prove in the following that the criterion ensuring 
that 1<1» is a SO consists in the set of equations 

C[ili2 ••. iNCklkl ••• kN_1 = 0, (2.3) 

where the coefficients Cil ... iN are anti symmetric 
functions of their indices, and the product of two 
such coefficients is to be anti symmetrized furthermore 
with respect to the indices enclosed in square brackets; 
in the case n = 4, N = 2, for example, the set (2.3) 

'J. Flores and P. A. Mello, Nuc!. Phys. 88, 609 (1966). 
• M. Ichimura, Progr. Theoret. Phys. (Kyotoj 31,575 (1964). 
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reduces to the single equation 

C[12C3)4 == C 12C 34 - C 13C 24 + C 14C 23 = O. (2.4) 

We first show that the criterion (2.3) is a necessary 
condition. If I<D) is an SD, then it can be written 

N 

I<D) = IT bt 10), (2.5) 
i=1 

where 

" bt = I Uiiaj, (2.6) 
i=l 

U being some unitary transformation. Inserting Eqs. 
(2.6) into Eq. (2.5), I<D) takes the general form (2.2), 
where the coefficients Cit ... iN are given as the deter­
minants: 

C .. = Zt-· .IN 
(2.7) 

We introduce now the creation operators 

" 
d+(il'" i._1i.+1 ••• iN) = IC'l·"i._lki,+1'''iNat. 

k=l 

(2.8) 

We note that, for each choice (i1 ... iN) of N indices, 
it is possible to construct N operators d+. However, 
these N operators are not necessarily linearly inde­
pendent. By replacing the coefficients Cil ... iN in Eqs. 
(2.8) by their expressions (2.7) in the form of deter­
minants and by expanding the determinants with 
respect to the k column, we see that the operators 
d+ have the form 

d+(i1 ... is- 1i
8
+1 ... iN) 

= x1bi + x2bt + ... + xNbt. (2.9) 

Then, from Eqs. (2.5) and (2.9), it follows that 

(2.10) 

We obtain without difficulty the quadratic equations 
(2.3) from the relations (2.10), by replacing the 
operators d+ and the wavefunction I<D), respectively, 
by their expressions (2.8) and (2.2) in terms of the 
coefficients Cil .. , iN • 

To show that criterion (2.3) is also a sufficient 
condition, let us suppose that I<D) has the general 
form (2.2) with C12 ... N =;1= O. If I<D) satisfies Eqs. (2.3), 
then it satisfies Eqs. (2.10), the two sets of equations 
being equivalent. Let us consider now the N operators 

" dt = !C1"' i - lki+1"'Nat, i = 1,"', N. (2.11) 
k=1 

The N x N determinant formed by the components 

of the operators dt, ... , d.t on the operators at ' ... , 
at, is equal to (C1 ... N)N =;1= O. The Noperators (2.11) 
are therefore linearly independent and the wave­
function I<D) may be written, up to a multiplicative 
constant, as a Slater determinant 

N 

I<D) = IT dt 10). (2.12) 
i=1 

3. QUASIPARTICLE TRANSFORMATIONS 

In this section, we introduce quasiparticle trans­
formations more general than the usual generalized 
Bogoliubov transformations.1.2 We shall need these 
new transformations for the derivation of the criterion 
characterizing a QPVS. Let us consider the creation 
and annihilation operators 

ai, ... , a! , a1"", a" (3.1) 

corresponding to the given single-fermion states (2.1). 
These 2n operators satisfy the anticommutation 
relations 

[aj, atl+ = [ai' akl+ = 0, [aj, ak]+ = ~ik (3.2) 

and the relations of adjointness 

aj = (ait, a j = (aj)+. (3.3) 

It will be convenient to introduce a 2n-dimensional 
vector space V formed by all complex linear combina­
tions of the operators (3.1). These operators form a 
possible basis for the space V, and the anticommuta­
tion relations (3.2) can be interpreted as defining a 
bilinear symmetric form on this basis.6 The 2n 
operators 

hi = (2rt(aj + a j ), h,,+i = i(2r!(aj - ai), 

j = 1, ... ,n, (3.4) 

whose anticommutation relations read 

[hi' hk ]+ = CJik , (3.5) 

form an orthonormal basis of V. The relations (3.3) 
become, in the basis hi' 

hj = hi' (3.6) 

We are now interested in finding the explicit form of 
transformations T which conserve only fermion anti­
commutation relations, and, also, of generalized 
Bogoliubov transformations TB which conserve 
both of the relations (3.2) and (3.3). Notice first 
that the transformations Tor TB act in two spaces: 
(i) in the operator space V following the rule aj-­
Tai T-l, and (ii) in the space of wavefunctions, which 
we shall denote by W, following the rule I<D) -- T I<D). 
The group G formed by the transformations T leaves 

• A. K. Bose and A. Navon, Phys. Letters 17,112 (1965). 
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invariant the bilinear symmetric form of the complex 
space V; it must, therefore, be isomorphic to the 
group O(2n, C) of complex orthogonal matrices. 
On the other hand, it was shown already6.7 that the 
group of generalized Bogoliubov transformations 
which we denote by GB is isomorphic to the group 
O(2n, R) of real orthogonal matrices. 

We determine first the form of the transformations 
in the connected subgroups G' and G~ of G and GB , 

isomorphic, respectively, to the proper orthogonal 
subgroups SO(2n, C) and SO(2n, R). It is known8 that 
any transformation of a connected group can be 
written as one term or as a product of terms of the 
form exp t, where t is a Lie algebra element. A Lie 
algebra element I will act in the space V following the 
rule 

aj ~ [I, a;L. (3.7) 

Let us consider the n(2n - 1) elements h;hk (j < k). 
These elements are linearly independent, generate by 
commutation a closed Lie algebra, and map any 
element of V, according to the rule (3.7), into another 
element of V. An element t of the Lie algebra of G' 
must be antisymmetric with respect to transposition, 
while an element t B of the Lie algebra of G'n must be 
both antisymmetric and real. The operation of 
transposition is to be defined for elements expressed 
in second quantization with respect to the bilinear 
form represented in V by the anticommutator. One 
obtains that the transpose of a product of operators 
h; or aj, a;, is the product of the same operators 
written in reversed order. Thus one has 

(hA)t = h0; = -h;hk' (3.8) 

and the operators h;hk form a basis for the Lie algebras 
of the groups G' and G'n. Arbitrary elements t and 
IB may now be written in the form 

(3.9) 

where the coefficients m;k are complex for t and real 
for lB' In terms of the operators oj, a;, the elements 
I and I B may be expressed as follows: 

t = ! (m;kajat + n;ka;ak) 
;<k 

+ ! p;kajak + ! r;(2aja; - 1), (3.10) 
i'l'k ; 

tB = ! [m;'k(aja: - aka;) + in;k(ajat + aka;) 
;<k 

+ p;k(ajak - ata;) + iq~k(ajak + ata;)] 

+ ! ir;(2aja; - 1), (3.11) 
; 

where the primed coefficients are restricted to be real. 

From the isomorphism between the groups G, GB 
and the groups O(2n, C), O(2n, R), we can assert 
now that transformations Tor TB are either proper 
or may be written as products of a chosen reflection 
by proper transformations. In order to know the 
general expression of transformations Tor TB , it will 
be sufficient to determine the form of some reflection. 
If we put 

(3.12) 

and notice that 
R-l = R, (3.13) 

it follows that the basis vectors h; of V transform like 

hi ~ RhiR-l = hi' h; ~ Rh;R-l = -h;, j ~ i, 

(3.14) 
and R is thus clearly a reflection. 

Let us discuss now briefly how the generalized 
quasiparticle transformations T' of the connected 
group G' act in the space W of wavefunCtions. This 
space is of dimension 2n , a general element of W 
being a mixture of 0-, 1-,' .. , n-particle wavefunc­
tions. W can be decomposed as direct sum of two 
2n

- 1-dimensional subspaces W' and Wo, containing 
respectively the wavefunctions with an even number 
of particles and the wavefunctions with an odd 
number of particles. The transformations T', which 
can be written as one term or as a product of terms 
exp t, are even operators [cf. Eq. (3.10)] and do not 
change the pari ty of the number of particles. Thus, T' 
acts inside each of the subspaces W' and Woo Further­
more, it was established in mathematical literature9 

that the two representations of the group G' in the 
subspaces W' and WO are irreducible and isomorphic 
to the spinor representations of the group SO(2n, C). 
This implies that there exists always a transformation 
T' mapping two given wavefunctions of W' or of Wo 
one into the other. 

4. CRITERION FOR QUASIPARTICLE 
VACUUM STATES 

A quasiparticle vacuum state 1<1» is usually defined l 

in one of the two ways: 
(i) there exist n annihilation quasiparticle operators 

ci = T nOiTj/, which satisfy the relations 

Ci 1<1» = 0; (4.1) 

(ii) 1<1» may be expressed in the form 

1<1» = TB 10). (4.2) 
7 C. Bloch and A. Messiah, Nuc!. Phys. 39,95 (1962). 
8 R. Hermann, Lie Groups for Physicists (W. A. Benjamin, Inc., 8 C. Chevalley, The Algebraic Theory of Spinors (Columbia 

New York, 1966). University Press, New York, 1954): 
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These definitions can be generalized by replacing the 
Bogoliubov transformations TB by the more general 
transformations T introduced in the previous section. 
This is possible because the set of quasiparticle 
operators (ci ) defining 1<1» in (i) is characterized 
only by the anticommutation relations 

(4.3) 

and do not imply relations of adjointness. Thus, any 
QPVS may be written in the form 

1<1» = T 10), (4.4) 

from which it is also seen that a QPVS is either odd or 
even with respect to the parity of the number of 
particles. 

Let us consider now an arbitrary even wavefunction 
which we denote by 1<1». Assuming that the number n 
of given single-particle states is also even, 1<1» can be 
developed as follows: 

1<1» = (Co + ! Cili2a~a-:-' 
it <i2 

+ ... + C12 .00 naiat ... a~) 10) == s 10). (4.5) 

Here S stands for the expression multiplying the 
particle vacuum. We prove in the following that the 
criterion for 1<1» to be a QPVS consists in the set of 
equations 

!'(-1)h(k-1lC[il"'izCit ... jk_,j ••• jk = 0, (4.6) 
I.k 

where the prime on the sign of summation means 
that I + k is to be kept constant. All equations of the 
set are obtained when c varies from 0 to n and I + k 
varies from 2c + 2 to n + c. In the case n = 4, the 
set (4.6) reduces to the single equation 

COC1234 - Cl2CS4 + C13C24 - C14C23 = 0, (4.7) 

considered already in problems of neutron-proton 
correlations.4•5 

We prove first that Eqs. (4.6) are a necessary 
condition. If 1<1» is a QPVS, then we can write it as 

1<1» == S 10) = T 10). (4.8) 

In the case of a finite number n of single-particle 
states, the product of all annihilation operators 
II~1 ai has exactly the same properties as the 
particle vacuum 10). Equation (4.8) may thus be 
rewritten as 

n n 

S II a. = T II at . (4.9) 
i=1 i=l 

Taking the transpose on both sides of Eq. (4.9) 

following the rule established in Sec. 3, and noting 
that an'" a2a1 = (-1)1'n(n-lla1a2 ... an and that 
Tt = T-I, we obtain 

n n 

II a.S t = II aiT-I. (4.10) 
i=1 £=1 

From Eqs. (4.9) and (4.10) it follows now that 
n n 

S II aiSt = T II at T-I
• (4.11) 

i=l i=1 

We note that A is the operator S IIf=1 aiSt arranged 
in normal order, i.e., creation operators to the left of 
annihilation operators. We remark that A is quadratic 
in the coefficients C of the wavefunction 1<1». If 
Ci = TaiT-1 are the quasiparticle operators generated 
by the transformation T from the n operators ai' the 
right-hand side of Eq. (4.11) can be written as the 
product TI:=1 c.' This product, expanded as a sum of 
tensors in at, ai' will not contain components of rank 
higher than n. The same condition will be valid for the 
operator A and will imply restrictions on the coeffi­
cients C. These restrictions, calculated in the Appendix, 
are found to be identical with Eqs. (4.6). 

We assume now the equivalence between Eqs. (4.6) 
and the condition that the operator A has no com­
ponents of rank higher than n, and proceed to the 
proof that criterion (4.6) is also a sufficient condition. 
Let us consider the operator A' = s' II:=1 aiS't, 
corresponding to the wavefunction 1<1» == S' 10) = 
T'I<I», obtained by applying a quasiparticle trans­
formation T' to the trial wavefunction 1<1» == S 10). 
The operator A' may be written in terms of the 
operator A, corresponding to 1<1», as 

A' = T'AT'-I. (4.12) 

It results from Eq. (4.12) that, if A has no components 
of rank higher than n, the same is true for A'. Thus, it 
will suffice to prove that Eqs. (4.6) are a sufficient 
condition for a wavefunction 1<1>') obtained from the 
trial wavefunction 1<1» by a quasiparticle transforma­
tion. 

We shall first choose the wavefunction 1<1>') and the 
transformation T' such that the coefficient C~ of S' 
is nonzero. This is possible because the space W' of 
even wavefunctions is irreducible with respect to the 
group G of quasiparticle transformations and, 
therefore, a transformation T' of G transforming a 
wavefunction with Co = 0 into one with C~ =F 0 must 
exist. We may set in fact C~ = 1. We can assume also 
that S' has no component of rank two. For, if S' has 
such a component, e.g., S~ = ! C;liaat a~, we may 
consider instead of 1<1>') the wavefunction 

(4.13) 
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with S; = o. With the above choice of wavefunction, 
which we shall d.enote from now on simply by 1<1», 
assuming that Eqs. (4.6) are satisfied, we shall prove 
that 1<1» = 10). 

Suppose that S has a component of rank h 24: 

Sh = ! Ci1 • "ihai,' •• a~ • (4.14) 

We may assume that one of the coefficients, e.g., 
C12 •.• h for the sake of simplicity, is not equal to zero. 
Defining now the operator 

S = C~i"'hatH ... a~, 
we can write the following relations: 

" 
SSh = n ai, 

i=1 

" SS= s+ nat. 
i=1 

(4.15) 

(4.16) 

(4.17) 

If the operator A corresponding to 1<1» has no com~ 
ponents of rank higher than n, then the operator 
aT AaT will not have such components because the 
oper~tor at on the right either contracts by crossing 
over A or gives zero by multiplying the ai on the left. 
From this it follows that the operator 

n 

A = SASt = (SS) n alSS)t (4.18) 

must not have components of rank higher than n. 
With the help of Eqs. (4.17) and (4.18), A can be 
written 

A = (C~~ . . hatH ... a~ + at· .. a~)a1 ... a" 

X (C~.l"hatH ... a~ + at ... a~)t, (4.19) 

in which form it is the sum of four terms. The two 
terms 

C- 2 a+ '" a+a .. , a (a+ ... a+)t l"'h h+l n 1 10 h+l n 
and 

at· .. ata1 ... a .. (ai ... a~)t 

have no normal components of rank higher than n 
because the wavefunctions at+! ... a;; 10) and 

at·· . at 10) 

are obviously QPVS. The term 

C;! .. hat· .. <al ... ana! ... at+! 

has no normal components of rank smaller than n + h. 
However, the term 

C~~"ha,1+l ... a!al ... ana~ ... at 

has clearly nonzero components of rank n + h -
2 > n. Thus, A has nonzero components of rank 
higher than n, which is contradictory. This entails 
that 1<1» = 10), which proves also that Eqs. (4.6) 
are a sufficient condition. 

APPENDIX 

In this appendix we prove that the condition, that 
the operator A has no components of rank higher 
than n, gives Eqs. (4.6). 

We evaluate first, by using Wick's theorem, the 
normal form of the operator 

a "'aa+"'a+ 1 10 :it jk' (AI) 

We consider a general term in (AI) obtained by the 
contraction of c operators at , ... ,aj+ , from the 

"1 Be 
set a"it,"', at,. We denote by (J~, ... ,j~-c) and 
(j~, ... ,j~-c); respectively, the indices remaining in 
the sequences (j)k == (jr, ... ,A) and (1,"', n) 
after the elimination of j'I' ... ,j.,. To be contracted, 
the operator aT must cross (Sl - 1) creation and 

"I 
(n - j.) annihilation operators, which gives a sign 
( -1 )n-i·1-sc l; the operator at.. must cross (S2 - 2) 
creation and (n - j •• ) annihilation operators, which 
gives a sign ( _1)1O-i,c'2-2, etc. The contraction of all 
c operators introduces the sign (_1)1OC-!' .(C+l)-~i.+~8, 
where !j. = j81 + ... + j.c and ! S = Sl + ... + 
S •• The normal product 

N(a}l" ... ain_:a"it, ... at,_J 

contributes also the sign (_l)(n-c)(k-c). Noting that n 
and k are even, the sign of the contracted term in (AI) 
will be (_l)!c(·-l)+~i.+~'. The normal form of the 
operator al ..• a"a"h ... at, is therefore 

~k ~ (_l)h(c-l)+l:i.+l:·a~ , ... a+ ,a. H ••• a H 

",,",0 """' , ik-c'l i n- c ' 
c Ci,)c 

(A2) 

where (Js). denotes a sequence of c indices j Sl •••• • j., ' 
chosen from the sequence (jh. 

The operator A, whose detailed form is 

A = (Co + ... + ! Ci1 . .. ilat ... at + ... ) 
il<"'<i, 

X a1 .. ·a .. (co+"·+(_1)!k(k-U 

X ! cit ... ika;;''''a1;.+''')' (A3) 
il < .. '<ik 

can now be written with the help of expression (A2) 
as 

A = !~ ! ! !~ ! ( _l)!k(k-l)( _l)!c(C-l)+l:i,+l:. 
I.k (ill (i)k • (J,), 

X C C a+"'a+a+ · .. a+ a "'a 
il'" i, il'" ik it i~ ii' ik-c' ;1" i n - e"· 

(A4) 

We must equate to zero the coefficients of the products 
at ... a~at., ... at,_c'ail, ... ain_: whose degrees dare 
higher than n. One has that d = 1.+ k + n - 2c, 
and. then d > n implies I + k > 2c; on the other 
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hand, the number I + k - c of creation operators in a 
product cannot exceed n, which implies that I + k ::;; 
n + c. Hence, the restriction 

where the prime on the summation sign means that 
1+ k is constant and equal to d + 2c - n, and the 
square bracket notation was already defined in Eq. 
(2.3). The set of equations obtained by equating to 
zero the coefficients of products with d > n is finally 

2c < 1+ k ::;; n + c. (AS) 

It can be easily verified that the coefficient of a 
given product of degree d may be written ", (l)ik(k-llC C 0 

£., - [i, ... il iI'" ik-c]ik-c+1 •.. ik = , (A7) 
l.k (_l)ic(c-l)+IJ.+l:S I' (_l)b(k-l) 

where I + k is restricted by (AS) and c may take all 
values 0 to n. 
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Two causality conditions that refer only to mass-shell quantities are formulated and their conse­
quences explored. The first condition, called weak asymptotic causality, expresses the requirement that 
some interaction between the initial particles must occur before the last interaction from which final 
particles emerge. This condition is shown to imply that if a two-body scattering function is analytic except 
for singularities in the energy variable at normal thresholds, then (a) the physical scattering functions in 
two adjacent parts of the physical region separated by any normal threshold are parts of a single analytic 
function; (b) the path of continuation joining these two parts bypasses the singularity in the upper half­
plane of the energy variable; and (c) the integral over the physical function can be represented as an 
integral over a contour that is distorted into the upper-half energy plane (hence not, for example, by a 
principal-value integral). Singularities possessing finite derivatives of all orders with respect to real 
variations of the energy are not encompassed by this result. The second causality condition, called 
strong asymptotic causality, expresses the requirement that, apart from contributions whose effects fall off 
faster than any inverse power of Euclidean distance, momentum-energy is carried over macroscopic 
distances only by stable physical particles. This condition implies that all n-particle scattering functions 
(n ~ 4) are analytic, apart from infinitely differentiable singularities, at physical points not lying on any 
positive-OI: Landau surface. Moreover, the scattering functions on the two sides of any such Landau 
surface are analytically connected by a path that passes around the singularity surface in a well defined 
manner, which is the same as in perturbation theory. Thus, apart from possible infinitely differentiable 
singularities, the physical region singularity structure is derived from a mass-shell causality requirement. 
Several properties of the set C+ of physical region positive-OI: Landau surfaces are derived. 

1. INTRODUCTION 

By a causality condition we mean a requirement 
that events identified as effects occur later than events 
identified as their causes. Such conditions have led to 
important properties of the basic functions of classical 
electrodynamics,l nonrelativistic quantum mechanics,2 

and quantum field theory.3 The aim of the present 
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Atomic Energy Commission. 

t Present Address: Department of Physics and Astronomy, 
University of New Mexico, Albuquerque, New Mexico. 

1 H. A. Kramers, Atti Congr. Intern. Fisici 2, 545 (1927); R. 
Kronig, J. Opt. Soc. Am. 12, 547 (1926). 

IN. G. van Kampen, Phys. Rev. 89, 1072 (1953) and 91, 1267 
(1953); J. S. TolI, ibid. 104, 1760 (1956). 

8 E. C. G. Stueckelberg and D. Rivier, Helv. Phys. Acta 23,215 
(1950); M. Fierz, ibid. 23, 731 (1950); M. GelI-Mann, M. L. Gold­
berger, and W. E. Thirring, Phys. Rev. 95, 1612 (1955). 

work is to formulate causality conditions within a 
mass-shell S-matrix theory and to derive from them 
certain properties of the physical-region scattering 
functions. 4 •5 

The procedure is as follows. The momentum space 
wavefunctions representing the initial and final particles 
of a scattering experiment are chosen to be Schwartz 
test functions, and the scattering functions, are 
shown to be Schwartz distributions. The mass-shell 
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constraints on these wavefunctions imply that the 
space-time wavefunctions defined by Fourier trans­
formation are solutions of the free-particle Klein­
Gordon equation. Consequently the regions over 
which these space-time functions are nonzero cannot 
be bounded; these wavefunctions have appreciable 
values on cones, called velocity cones, running from 
the infinite past to the infinite future. It is argued in 
Sec. 2 that these velocity cones can be interpreted as 
the trajectory regions of the corresponding particles 
in the sense that the transition amplitude of a reaction 
will be small unless the velocity cones of appropriate 
particles intersect. These intersections are interpreted 
as the locations of the possible particle collisions. It 
is their space-time ordering that is restricted by the 
causality conditions. 

The space-time wavefunctions are not strictly 
confined to their velocity cones, but have "tails" that 
extend over all space-time. This means that the 
locations of collisions are not sharply defined. This 
presents a difficulty that must be surmounted. 

In Sec. 3 a condition called weak asymptotic 
causality (WAC) is formulated. This condition ex­
presses the general idea that if a time t can be found 
such that none of the collisions between initial particles 
occur at times earlier than t, and none of the collisions 
from which final particles emerge occur at times later 
than t, then the corresponding transition amplitude 
should be small. In other words, the first collision 
between initial particles should occur no later than the 
last collision that produces final particles. The WAC 
condition is formulated so that it refers only to the 
asymptotic regions long before or long after the 
relevant collisions take place. Indeed, it is only in 
these regions that the free-particle wave functions 
should have physical significance. From the WAC 
condition we derive the ie rule for continuation past 
any physical-region Landau singularity surface of 
the two-body scattering functions. This weak condi­
tion is not strong enough, however, to give the 
rule for continuation past an arbitrary Landau singu­
larity surface of a general n-particle scattering func­
tion. 

In Sec. 4 a stronger condition, called strong 
asymptotic causality (SAC), is formulated. It embodies 
the idea that energy-momentum is carried over 
macroscopic distances only by physical particles. 
More precisely, the probabilities of interactions 
having energy-momentum transfers that cannot be 
attributed to physical particles are required to fall off 
faster than any inverse power of the Euclidean distance, 
as the distances involved become infinite. The SAC 
condition is shown to imply that the scattering 

functions are infinitely differentiable at all physical 
points not lying on a positive-at Landau surface. 

Points that do lie on some positive-at surface are 
classified as Type I points or Type II points. Points 
which lie on only one positive-at Landau surface are 
included among the Type I points. The only known 
examples of Type II points are points at which two 
initial or two final particle energy-momentum vectors 
are collinear. The SAC condition is shown to imply 
that in a neighborhood of a Type I point K a scattering 
function can be represented as a sum of a finite 
number of terms of which the first is infinitely differ­
entiable, while the others are boundary values of 
holomorphic functions. Furthermore, these boundary 
values are themselves infinitely differentiable except 
on the relevant Landau surfaces. If K belongs to only 
one positive-at Landau surface, then there is only one 
of these boundary-value terms, and the ie prescription 
that defines the boundary value agrees with that 
of perturbation theory. Similar results are derived 
for Type I points at which several positive-at sur­
faces intersect. No results are obtained for Type II 
points. 

The results described above are useful in the follow­
ing way. In analytic S-matrix theory, it is assumed 
that the only singularities of the scattering functions 
are those that arise from the unitarity equations. But 
even granting that the positions of the singularities 
are known, there is the question of how to continue 
around them. There is even the prior question of 
whether the physical scattering functions on the two 
sides of a singularity passing through the physical 
region are analytically connected at all. That these two 
functions can differ is a real possibility. For example, 
the K matrix, which also has singularities on the 
Landau surfaces, is not represented in sectors sepa­
rated by these surfaces by the same analytic function. 
This property is a special feature of the scattering ma­
trix. It has usually been assumed that one could accept 
the results of perturbation theory on this point and 
take the scattering function in the various sectors to be 
parts of a single analytic function, with the rule for 
continuation around singularities the same as in 
perturbation theory. The present work provides a 
physical basis for these assumptions. Infinitely 
differentiable singularities are not encompassed. 
Since, however, the singularities generated by the 
unitarity equations are apparently never infinitely 
differentiable, this omission is of no practical signifi­
cance in this context. 

As a by-product we obtain a number of useful 
results concerning the nature of the set C+ of physical 
points lying on positive-at Landau surfaces. Let .A{, be 
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the mass shell. This consists of points in energy­
momentum space that satisfy the mass constraints 
and the conservation laws. Let .A(,o be the subset of 
.A(, where two (or more) initial or two (or more) final 
energy-momentum vectors are collinear. Let C+[!)] be 
the Landau surface in .A(, associated with the Landau 
diagram !), and let Ct[!)] be the subset oH+[!)] that 
excludes points lying on the C+[!)'] of any contraction 
!)' of !). Then c+ is the union of points lying on the 
various ct[!)]. Each point K 1= .A(,o of Ct[!)] is shown 
to correspond to a unique (apart from scaling) point 
in the space of Feynman ex's. Each surface Ct[!)] is 
shown to be an analytic submanifold of .A(, - .A(,o 

of codimension 1. It is shown that the it: prescriptions 
associated with a set of intersecting Landau surfaces 
Ct [!)i] associated with a set of !)i that are all con­
tractions of some single!) are necessarily compatible. 

2. BASIC FORMALISM 

A. Transition Amplitudes 

The basic observables in scattering experiments can 
be considered to be the scattering amplitudes for 
transitions from initial systems of freely moving 
particles to final systems of freely moving particles. 
The general mathematical form of these transition 
amplitudes is dictated in the following way by physical 
requirements. 

Consider an arbitrary reaction involving a total of 
n initial and final particles. Let the particles be labeled 
by an index i, 1 :::;; i :::;; n. Each particle is represented 
by a complex-valued momentum space wavefunction 
"Pi which, because the particles are freely moving, is a 
mapping "Pi: .A(,i - C from the real manifold 

.A(,i = {ki I k~ == (kiO)2 - k~ = ft~, (JikiO > O} (2.1) 

into the space C of complex numbers. The vector k i is 
the mathematical energy-momentum of the ith par­
ticle and is defined by k i = (JiPi, where Pi is the 
physical energy-momentum of the particle, and 

{ 
+ 1 , for final particles, 

(Ji = -1, for initial particles. 
(2.2) 

The mass fti of each particle is assumed to be nonzero. 
Other quantum numbers such as spin, isospin, charge, 
etc., are unimportant in this discussion and are not 
indicated explicitly. The functions "Pi can, for the 
present purposes, be assumed to belong to the spaces 
~(.A(,i) of functions that have compact support 
supp "Pi C .A(,i and continuous partial derivatives of 
all orders in .A(,i' 

The transition from the initial system of particles to 
the final system is represented by a functional 

S["Pl> ... ,"Pnl which, when all of the wavefunctions 
"Pi have unit norm 

II"Pili = {(21T)-3f d4kO((J;ko)c5(k2 
- ft~)I"PlkWt, (2.3) 

is a probability amplitude. The functional S is assumed 
to be linear in the wavefunctions of the initial particles 
and antilinear in the wavefunctions of the final 
particles. This linearity, together with the probability 
interpretation of S, implies the inequality 

IS["PI,"', "Pn]1 :::;; II II "Pill· (2.4) 
i 

This inequality in turn implies the continuity of S in 
each variable "Pi in the topology induced by the norm 
(2.3),6 and hence also in the topology of ~(.A(,i)' 7 The 
functional S can, therefore, by virtue of the nuclear 
theorem,s be written S["PI"" , "Pnl = S["P], where 
"P is the product wave function 

and S["P] is a continuous linear functional (Schwartz 
distribution) on the space ~(®.A(,i) of functions with 
compact support and continuous partial derivatives of 
all orders in the product space 

®.A(,i = .ALI @ .A(,2 @ ••• @ .A(,n· 

Conservation of energy and momentum requires S 
to be concentrated on the set 

.A(, = {KI K = (kl ,'" ,kn) E ®.A(,i' ~ki = O}. 

(2.6) 

The restricted real mass-shell 'ill is the subset of all 
points K of .A(, at which at least two of the vectors ki 

are linearly independent. The restriction of S to the 
set 

$('ill) = {"P I "P E ~(®.A(,i)' (.A(, n supp "P) C 'ill} 
(2.7) 

then has the representation9 

S["P] = f dK"P(K)S(K), 

where S(K) is a Schwartz distribution and 

(2.8) 

dK = (21T)4-3nc5(~ki)I1 d4kic5(k~ - ft~)O( (JikiO) (2.9) 

is the (Lorentz invariant) volume element of'lV. 

• N. Dunford and J. T. Schwartz, Linear Operators (Interscience 
Publishers, New York, 1958), Vol. 1, p. 59. 

7 H. Bremermann, Distributions, Complex Variables, and Fourier 
Transforms (Addison-Wesley Publ. Co., Reading, Mass., 1965), p. 
39; or R. F. Streater and A. S. Wightman, PCT, Spin and Statistics 
and All That (W. A. Benjamin Co., Inc., 1964), Chap. 2. 

8 R. F. Streater and A. S. Wightman, Ref. 7, p. 43. 
• D. Williams, J. Math. Phys. 8, 1807 (1967). 
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It is convenient to use, instead of S(K), the distri-
bution 

T(K) = S(K) - So(K) , (2.10) 

where SoCK) is the no-scattering part of the S matrix. 
Our causality conditions will be formulated in terms 
of the corresponding functionals T[V']. 

B. Infinite Differentiability 

In the following sections the distribution T is some­
times said to be infinitely differentiable, and some­
times holomorphic, at a point K of 'ill. These 
statements are given precise meaning in the follow­
ing way. 

The restricted real mass-shell 'ill is a subset of the 
restricted complex mass-shell 'ille. The definition of 
'ille is analogous to that of 'ill:.A(,e is the set defined by 

.A(,e = {K I k~ = ft~, 'f.k; = O}, (2.11) 

where the components of the vectors k i are now 
allowed to assume complex values, and 'ille is the set 
of all points K = (k1 , ••• , k n) of .A(,c at which two ~r 
more of the vectors k; are linearly independent. ThIS 
set 'ill is a (3n - 4)-dimensional submanifold of C4n , 

e • • 
which means that at every pomt K E 'ille there IS a 
(nonunique) local coordinate system.10 This local 
coordinate system is defined as a triple (~e(K), IlK' 
De(K» consisting of a neighborhood ~e(K) c C4n of 
K, a polydisk 

De(K) = {z I z E C3n-4, Iz;. - 2;.1 < r;., 
2 E C3n-4, r;. > O}, (2.12) 

and a nonsingular holomorphic mapping IlK: De(K)--+ 
~e(K) which is such that K = II K(2) and 

'ille (l ~c(K) = IIK(Dc(K». 

At points K of 'ill this mapping can and will be chosen 
so that ~c(K) (l 'ill = IIj{(De(K) (l R3n-4). 

It is sometimes convenient to choose a local 
coordinate system in which the local coordinates z;. 
are defined by the equations z;. = U;. . K, where the 
U;. = (U;'l' ••• ,u;'n) are appropriately chosen n­
tuples of four-vectors and 

n n 3 

U;.· K = 2 UU' k; =! 2 g vvuuvk;v. (2.13) 
i=l i=lv=O 

(The metric is gOO = _gll = _g22 = _g33 = 1.) 
Such a coordinate system will be called a simple 
coordinate system. 

Infinite differentiability on 'ill can now be defined as 
follows. 

10 The notation is essentially that of R. C. Gunning and H. Rossi, 
Analytic Functions of Several Complex Variables (Prentice-Hall, 
1965). See also Appendix B. 

Definition I: Let F(K) be a function defined on 
some open set X c 'ill. The function F(K) is said to be 
infinitely d[fferentiable at K E X if and only !f for 
every choice (~e(K), IlK, De(K» of local coordmates 
at K, the function FoIl j{ has continuous partial 
derivatives of all order in some neighborhood 
D c IIi(X (l ~e(K» of 2 = IIi(K). If, in addition, 
the function FoIl j{ can be represented by a con­
vergent power series in a neighborhood of 2, the 
function F is said to be holomorphic at K. 

Definition 2: Let T(K) be a Schwartz distribution 
defined on some open set X c 'ill. The distribution 
T(K) is said to be infinitely differentiable (holo­
morphic) at K E X if on some neighborhood X' c X 
of K there is defined an infinitely differentiable 
(holomorphic) function F(K) that satisfies the equation 

f dK V'(K) [T(K) - F(K)] = 0 (2.14) 

for all wavefunctions V' in 

$(X/) = {V' I V' E ~(®.A(,i), 

(.A(, (l sUPPV') c X'}. (2.15) 

Because the different possible local coordinate sys­
tems are holomorphically equivalent,u the conditions 
of the definitions are satisfied for all choices of local 
coordinate systems if they are satisfied for any 
particular choice. 

C. Space-Time Wavefunctions 

A preliminary problem of this paper is to develop 
some kind of space-time picture of a scattering process. 
To this end we introduce space-time wavefunctions 

if;(x) = (27T)-3 f d4k13(k2 - ft~)()( O';ko)e-itl;k·"'V'i(k). 

(2.16) 

These functions if;(x) have the important property12 

that, for every positive integer N, the equation 

lim TNif;('XT) = 0 (2.17) 
T .... 00 

is satisfied uniformly in x on compact subsets of the 
complement of 

V(V'i) = {x I x = kt, k E supp V'i' t real}. (2.18) 

This property entails that for any fixed positive 
numbers E, N, and 13 there exists a TO such that for 
all T> TO one has I if;(XT) I < (Ixl T)-N13 for all x in 

11 Reference 10, p. 17. 
10 D. Ruelle, Helv. Phys. Acta 35, 147 (1962). 
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the complement of the set 

V.("Pi) == {x I x = kt, Ik - k'i :5: €, 

k' E supp "Pi' t real} U {x Ilxl :5: €}. (2.19) 

[The norm Ixl of any four-vector x is the Euclidean 
norm Ixl = (1:x~)!.) The rapid uniform collapse of 
iiii(:iT) into V.("Pi) as T -.. 00 suggests that the ith 
particle may in some limiting sense be regarded as 
confined to 

V.("Pi' T) = {x I x = XT, X E V.("Pi)}. (2.20) 

This suggestion is supported by the following 
consideration. Let the various wavefunctions iiJi be 
displaced by the respective amounts UiT. The displaced 
momentum-space wavefunctions are 

"Pi(k) exp (iCfik . UiT), 

and the corresponding transition amplitude is denoted 
by T["P; UT). Thus, for product wavefunctions "P in 
$('UJ), the amplitude T["P; UT) has the representation 

T["P; UT) = f dKe-iUoKr"P(K)T(K). (2.21) 

If T(K) is essentially constant in the (perhaps very 
small) support of "P, the approximation 

T["P; UT) 

Rj Afd4
X IT iiJ;(x - UiT) IT iiJt(x - Ui7') (2.22a) 

initial tinal 

= Afd4(XT) IT iiJi«X - Ui)T) IT iiJi*«X - Ui)T) 
initial final 

(2.22b) 

can be made. If an € > 0 can be found such that no 
point lies simultaneously in all of the displaced cones 

V.("Pi; Ui) = {x I x - Ui E V.("Pi)}, (2.23) 

then Eqs. (2.17) and (2.22) imply that 

lim TNT["P; UT) = 0 (2.24) 
T-+ <Xl 

for alI positive integers N. [Henceforth, the notation 
f(T) ==> 0 will indicate the rapid decrease (2.24) of any 
function f( T).] That is, if the intersection of all the 
sets V.("Pi; ui) is empty, then the probability that a 
reaction of the corresponding particles takes place 
decreases rapidly as T becomes infinite. 

This result provides a justification for considering 
the particles to be mainly confined to the space-time 
regions where the corresponding wavefunctions iiJi are 
not smalI. It also suggests that the image under 
x -.. x = XT of the region of intersection of the dis­
placed cones V.("Pi; ui) should be interpretable as the 
location of the "collision" of the corresponding 

particles, in the limit T -.. 00. This idea has been dis­
cussed in detail in Ref. 5, and shown to be completely 
in accord with the nature of the one-particle exchange 
contribution to a scattering process. 

This interpretation of overlap regions as the loca­
tions of the corresponding collisions is the basis of the 
present work. These collisions constitute the "events" 
of S-matrix theory, and causality conditions place 
restrictions on their space-time ordering. 

3. WEAK ASYMPTOTIC CAUSALITY (WAC) 

A. Formulation of WAC 

If the particle trajectories (i.e., the displaced 
velocity cones) are such that all possible collisions 
involving two or more initial particles occur later 
than all possible collisions from which two or more 
final particle can emerge, the reaction is considered 
to be acausal and the corresponding transition ampli­
tude is required to be small. This requirement is made 
precise in the following way. Let "P be a product wave­
function and let T["P] be the corresponding transition 
amplitude. Let the particles represented by "P be 
displaced by amounts UiTo The displaced particles are 
represented by the wavefunctions "Pi(k) exp (iCfik· UiT), 
and the transition amplitude corresponding to them is 
denoted by T["P; UT). For any fixed time 1 and pos­
itive number € define the two sets 

b±(i, €) = {x I ±(xo -l) ~ -€}. (3.1) 

Finally, let A(t, €, "P) be the set of all n-particle 
displacements U = (Ui' U2 , ••• , un) such that (a) the 
Euclidean distance between points of Vi"Pi; ui) () 
b-(l, ~-) and points of V.("P;; Ui) () b-(l, €) has a 
lower bound dij > 0 for all pairs (i:;t6 j) of initial 
particles, and (b) the distance between points of 
V.("Pi; u) () b+(l, €) and points of V.("Pi; Ui) () 
b+(l, €) has a lower bound dt; > 0 for all pairs 
(i:;t6 j) of final particles. A set A(t, €, "P) is called a set 
of acausal displacements. The weak causality con­
dition is as follows: 

Weak Asymptotic Causality (WAC): For any fixed 
product wavefunction "P in $('UJ), fixed time 1, and 
fixed positive number €, the condition T["P; UT) ==> 0 is 
satisfied uniformly in U on every compact subset of 
the set A(l, €, "P) of acausal displacements. 

This causality condition is justified in Appendix A 
by proving that it holds in nonrelativistic quantum 
mechanics and in all classical models with finite-range 
interactions. 

The WAC condition is also plausible within the 
framework of relativistic theories. If the set of particle 
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FIG. 1. Displaced velocity cones which are acausal with respect to 
WAC. 

displacements U belongs to A(l, €, "P), then the dis­
placed velocity cones 

V.(tpi; ui ' 'T) == {x = .XT I x E V.(tp;; ui)} (3.2) 

of the initial particles become increasingly far apart, 
as 'T becomes infinite, for all times Xo < 1'T + €'T, and 
the displaced velocity cones of the final particles be­
come increasingly far apart for all times Xo > fT - €'T. 
But if the initial particles become increasingly far 
apart in Xo < i'T + €'T, then the state generated near 
Xo = fT by the initial particles should be represented 
with increasing precision, as 'T -+ 00, by the displaced 
initial free-particle state. Similarly, the state near 
Xo = i'T that develops into the final free-particle state 
should be represented with increasing precision by the 
displaced final free-particle state. (See Fig. 1.) There­
fore, both these states near Xo = i'T are represented 
with increasing precision by the corresponding free­
particle states, and the transition amplitude T[tp; U'T] 
should approach its no-scattering value. This value 
is zero since the no-scattering part has been subtracted 
from T. 

According to this argument, the amplitude T[tp; U'T] 
would be expected to vanish as 'T becomes infinite. 
But should it decrease faster than every inverse power 
of 'T? This property means that for any fixed N, no 
matter how large, the amplitude decreases faster than 
'T-N. Now, the overlap integrals 

O[j(U, 'T) = ( d4x l1fib - U;'T)1filx - uj'T)I, 
JD±(i .• ,r) (3.3) 

where 
D±(f, €, 'T) == {x = X'T I x E D±(l, €)}, (3.4) 

should provide a measure of the probability that 
interactions take place in D±(f, €, 'T). If U belongs to 
A(i, €, tp), then (a) ()i;(U, 'T) => 0 for all pairs (i :;I: j) 
of initial particles, and (b) 01j(U, 'T) => 0 for all pairs 
(i :;I: j) of final particles.13 The overlap integrals 

N 
therefore decrease faster than, say, 'T-N . If the 
propagation of dynamical effects is itself causal, at 
least up to terms that fall off faster than any inverse 
power of (Euclidean) distance, the fact that the initial 
and final overlaps fall off at a very large rate ('T-NN

) 

should insure that the transition amplitude falls off 
at least at a relatively slow rate ('T-N ). 

The discussion of the previous two paragraphs is 
based on the idea of a development of a system in 
time. It does not, however, require a fundamental 
quantity that represents the "state" of a system at an 
instant of time. As 'T becomes infinite, the duration 
of the strip €'T ~ (xo - fT) ~ -€'T over which the 
initial and final particle states are compared becomes 
infinite. Therefore, the notion of a "state" of a 
system needs to become precise only when the time 
interval to which it refers becomes infinite. This is in 
accord with the general S-matrix philosophy. 

B. Consequences of WAC 

The weak asymptotic causality condition does not 
permit a complete specification of the singularity 
structure of T(K) , but it does have some useful 
consequences. Suppose that .N' is a connected open 
set in 'UJ and that the set f:+ of points lying on positive-IX 
Landau surfaces14 passes through .N'. Suppose also 
that T(K) is holomorphic on .N' - f:+. It is then of 
interest to know whether the functions that represent 
T(K) in the various regions of .N' - C+ are holomor­
phic continuations of each other, and if so, to know 
the path that connects them. 

In Sec. 5 it is shown that almost every point K on 
f:+ has a neighborhood .N' such that 

.N' ('\ C+ = {K IKE.N', A(K) = O} (3.5) 

where A(K) is a real analytic function defined in a full 
4n-dimensional neighborhood of .N'. The gradient 
V' A(K) = (u l , ••• , un), where Uiv = aA/ak:, is well 
defined and is nonzero in .N'. This result motivates the 
following theorem. 

Theorem 1.' Suppose the following four conditions 
are satisfied: 

(a) A real analytic function A(K) is defined in a 

13 This is an easily proved consequence of (2.17) and the inter­
section properties of the sets V.(ljJi; Ui)' 

14 L. D. Landau, Nuclear Phys. 13, 181 (1959). See also Ref. 17 
p.1556. 
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full neighborhood of a neighborhood X c W of 
KEW; 

(b) there is a local coordinate system (~~(K), IIK, 
D~(K» with Zl = A(K),15 such that the distribution 
T = Toll K is a distribution in Zl that is infinitely 
smooth in the variables (Z2' •.• ,ZSn-4)' That is, for 
any test function V'(z) with support in D~(K) the 
amplitude T[V'] has the representation 

f 
dm 

T[V'] = dzF(z) - [J(z)V'(z)], 
dzf' 

(3.6) 

where m is an integer, J(z) is the Jacobian appropriate 
to the transformation IIK, and F(z) is continuous in 
Zl and has continuous derivatives of all orders in 
(Z2' ••• , ZSn-J; 

(c) for some fixed time t, some fixed E > 0, and 
some fixed product wavefunction c/> in $(W), with 
c/>(K):F 0, the set A(f, E, c/» contains -VA(K); 

(d) the WAC condition is valid. 

Let (~e(K), II s, De(K» be any simple, coordinate 
system at K. Then for any ex, 0 < ex < 1, there exists a 
real neighborhood X' c (X n ~e(K) n supp c/» of 
K such that the restriction of the functional T to 
$(X') can be written in the form 

T[V'] = lim JdKV'(K)[TO(K) + T1(K'(K, d»], 
161-+0 

6eC+(<<) (3.7) 

where 
K'(K, d) == II s(IIi(K) + id) (3.8) 

and 
C+(ex) = {b IdE RSn

-\ (15, y) > Idllyl ex}. (3.9) 

The vector y in (3.9) is nonzero and is given by 

Y;, = [i7A 0 IIK/(i7z;,)](z), I::; A ::; 3n - 4, (3.10) 

where II s(z) = K. The function roCK) is infinitely 
differentiable on X', and the function TI(K) is holo­
morphic (has a power series expansion in local 
coordinates10) on 

B« = {K IKE We n ~c(K), 1m [niCK)] E C+(ex)}. 
(3.11) 

This theorem is proved in Appendix C. 
The specific form of the domain BIZ of Theorem 1 

depends on the particular choice of simple coordinate 
system. A variation of Theorem 1 that does not refer 
to a particular simple coordinate system is the follow­
ing Theorem lA, which is also proved in Appendix 
C. 

16 The necessary condition that A(z) == A ol1li(z) have non­
vanishing gradient follows from condition (c) of the theorem. 
This result is contained in the proof of the theorem. See also Sec. 5. 

Theorem 1 A: Suppose the assumptions of Theorem 
1 are satisfied. For any E > 0 define 

Ct(K) = {K I 1m ([VA(K) + U] . K} > 0 

for all U E R.}, (3.12) 
where 

R. = {u I U = (u 1 ," " un), IIUII = [~u;vr ~ + 
(3.13) 

the components Uiv being real. Then for any E > 0 
there exists a complex neighborhood X. eWe of K 
such that the restriction of T to $(W n X.) has the 
form 

T[V'] = lim fdKV'(K)[TO(K) + T1(K'(K, s»], (3.14) 
8-+0 

where K'(K, s) is any function uniformly continuous 
in K E X. n 'ill and s, 0 < s < 1, such that: K'(K, s) 
is infinitely differentiable on X. n 'ill and all deriv­
atives are continuous in both K and s; K'(K, 0) = K 
for all K E [X. n W]; and K'(K, s) E [X. n ct(K)] 
for all s > O. The function roCK) is infinitely differ­
entiable on X. n Wand TI(K) is holomorphic on 
X. n C:(K). 

The content of Theorem IA is this: At points K 
sufficiently near K, the functional T[V'] is represented 
by a function that is, apart from infinitely differen­
tiable singularities, holomorphic in a domain that is 
essentially the upper half-plane of the variable 

a(K; K) = VA(K)' K. 

This theorem is applicable, for example, to the case 
of two-particle scattering [1 + 2 -- 3 + 4]. The only 
(positive-ex) Landau surfaces in the physical region 
are those corresponding to normal thresholds in 
s = (ks + k4)2. These surfaces are given by functions 
A of the form A(K) = (ks + k4)2 - M2. Thus the 
displacement V A(K) has the form 

VA(K) = (0,0, u, u), (3.15) 

where U = 2(ks + k4). This displacement vector sim­
ply shifts the two final particles, 3 and 4, by twice the 
total energy-momentum vector of the reaction, as is 
illustrated in Fig. 2. If kl and k2 are not collinear and 
if "a and "4 are not collinear, then it is clear from the 
figure that for any product wavefunction c/> with 
sufficiently small compact support centered at K, 
there exists a t and an E for which - V A(K) belongs to 
A(t, E, c/». Indeed, because u is positive timelike (ka 
and k4 are positive timelike), the displacement 
- VA(K) moves the regions of intersection of the 
final-particle velocity cones to a position earlier than 



                                                                                                                                    

MACROSCOPIC CAUSALITY AND SCATTERING AMPLITUDES 833 

FIG. 2. Two-particle scattering (1 + 2 ...... 
3 + 4). The velocity cones are displaced by 
U = (0, 0, u, u), where u is positive tirne­
like. 

that of the initial-particle cones. Thus condition (c) 
can be satisfied for any value of flying between these 
two regions, for some sufficiently small €. If fez) is 
analytic in the variables other than Zl = A(K), and if 
WAC is valid, then all the conditions of the theorem 
are met. The function Ti(K) is then hoi om orphic in 
what is essentially the upper half-plane of the variable 
a(K; K). This upper half-plane is to lowest order in 
(K - K), the upper half-plane of the variable s, so 
Ti(K) is holomorphic in the intersection of a neigh­
borhood of K with what is essentially the upper half­
plane of the variable s. 

Another application of Theorem 1 is to the pole 
contribution to the three-particle scattering amplitude. 
If in the vicinity of the pole at A(K) = ° the amplitude 
is assumed to have the form T(K) = R(K)D[A(K)] + 
H(K), where R(K) and H(K) are holomorphic and 
D[A] is a distribution that is holomorphic for A ~ 0, 
then the conditions of the theorem on the structure of 
T(K) are satisfied. The function A(K) is given by 
A(K) = (ka + k4 + k6)2 - M2, and the displacement 
V' A(K) is, therefore, 

V' A(K) = (0, 0, u, 0, u, u), (3.16) 

where U = 2(ka + k4 + k6). The result of this dis­
placement is shown in Fig. 3. Suppose now that none 
of the initial-particle momenta are collinear and none 
of the final-particle momenta are collinear. Then 
inspection of Fig. 3 shows that for wavefunctions r/J 
with sufficiently small compact support centered at 
K, there exists a f and an € for which - V' A(K) belongs 
to A(l, €, r/J). Theorem I again prescribes a path of 
continuation of Tl which involves infinitesimal de­
tours into the upper half-plane of a(K; K). 

The WAC condition does not give the i€ prescrip­
tions for normal thresholds of all types of reactions. 
For example, if the case just considered were modified 
by adding one external line at each vertex in such a 

FIG. 3. Three-particle scat­
tering (1 + 2 + 3 ...... 4 + 5 + 
6). The velocity cones are dis­
placed by U = (0, 0, u, 0, u, u), 
where u is positive tirnelike. 

way that each subreaction involved two initial and two 
final particles, then the conditions of the theorem 
could not be satisfied. Indeed the conditions of the 
theorem provide, in such a case, no distinction 
between the two collisions that allows one to identify 
one collision as the cause and the other as the effect; 
the two vertices are completely equivalent so far as 
weak causality is concerned. 

The two vertices are, of course, not completely 
equivalent. Positive energy is generally carried into 
one and out of the other by the external part:cles. 
This provides the necessary distinction between cause 
and effect, because energy-momentum is always 
transferred over macroscopic distances in a way such 
that positive energy flows forward in time. To proceed 
further, this energy-balance consideration must be 
incorporated into the causality condition. 

The WAC condition can be augmented by an 
energy-balance condition so as to give the i€ prescrip­
tions for all normal thresholds. Rather than dwelling 
on this point, we pass directly to the logical extension 
of this idea. Transmission of energy and momentum 
over macroscopic distances is, as far as we know, 
associated not only with the forward transmission of 
positive energy, but with transmission of just those 
amounts of energy and momentum that can be carried 
by physical particles. A formulation of this idea is 
given in the next section. 

4. STRONG ASYMPTOTIC CAUSALITY (SAC) 

A. Formulation of SAC 

The condition of strong asymptotic causality (SAC) 
is a formulation of the notion that momentum­
energy is transmitted over macroscopic distances only 
by stable physical particles: If a reaction requires a 
transfer of energy-momentum that cannot be carried 
by stable physical particles, then SAC requires the 
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FIG. 4. A causal network. 

probability of that reaction to fall off faster than any 
inverse power of the lower bound on the Euclidean 
distances over which such transfers must carry. 

The central idea in the formulation of this require­
ment is that particle collisions are located in the 
intersections of the trajectory regions (i.e., displaced 
velocity cones) of the corresponding wavefunctions. 
From a collision involving two or more initial particles 
certain other stable physical particles may emerge. 
The momenta of these new particles must be consistent 
with conservation laws, and their trajectory regions 
must originate in the collision region where they are 
produced. These new trajectory regions may intersect 
other trajectory regions, defining new collision regions 
from which additional particles may emerge. In this 
fashion a causal network of collision regions connected 
by physical particle trajectories can be built up. (See 
Fig. 4.) 

In order to formulate this idea more precisely the 
following definitions are introduced. 

Definition 3: A causal space-time diagram ~ is a 
triple ~ = (V, L, 1:) consisting of a set V = (VI' ... , 
vm ) of space-time points (vertices), a set L = 
(L I , ••• , Ls) of directed line segments of space-time 
points, and a matrix I: of structure constants. The 
following properties hold: 

(a) Each line segment L; has the representation 

L, = {x I x = tit + (1 - t)li, 0 ~ t ~ I}, (4.1) 

where the end points I; are space-time points; 
(b) the set V is the intersection of the end points: 

V = {x I x = If = Ii' for some a, a' and. i ¢j}. 

(4.2) 

Lines intersect effectively only at end points; 
(c) the structure constants I:ir (1 ~j ~ s, 1 ~ r ~ m) 

are defined by 

{

+ 1, if Vr = It, 
I:;r = -1, ifvr = Ii, 

0, otherwise; 

(4.3) 

(d) each line segment L; is associated with a freely 
moving physical particle of nonzero mass #; and 
momentum-energy p;. The real momentum-energy 
vector p; satisfies p~ > 0 and p~ = #~, and is related 
to L; by 

1:1; == It - Ii = IX;P;, 

where IXi is some positive real number; 
(e) momentum is conserved at each vertex: 

! p;l:;r = 0, all r 

(4.4) 

(4.5) 

(any other additively conserved quantum number must 
obey a similar conservation law); 

(f) each Vr satisfies (4.2) with a = a' = + I and 
also with a = a' = -1. (This condition can be 
imposed by virtue of the stability condition on the 
masses of physical particles.) 

The line segments of ~ are divided into two classes: 
internal and external. A line segment is internal if the 
set V contains both of its endpoints. Otherwise it is 
external. The vertices are similarly classified: a vertex 
is external if it is the end point of at least one external 
line. Otherwise it is internal. A ~ with no internal 
lines is called trivial. 

Definition 4: Let '1jJ = II '1jJi be a product wavefunc­
tion. An n-particle displacement U = (ul , ••• , un) 
belongs to the set e('1jJ) , and is called causal with 
respect to '1jJ, if and only iffor each I: > 0 there exists a 
causal space-time diagram ~. such that: 

(a) the diagram ~. has n external lines that are 
associated (in the sense of Definition 3) in a one­
to-one fashion with the n initial and final particles 
represented by '1jJ. In particular, the physical mo­
mentum-energy vectors associated with the external 
lines are Pi = aiki , where K = (kl' ... , k n ) belongs 
to the support of'1jJ; 

(b) the vertex of ~. that contains the endpoint of 
the ith external line is contained in V.('1jJi; ui ). 

The sets of displacements that are not causal with 
respect to '1jJ are acausal with respect to '1jJ: 

(4.6) 

The strong asymptotic causality condition analogous 
to WAC would be the requirement that for any fixed 
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product wavefunction "P E $('UJ) the relation 

T["P; U'T] => 0 

be satisfied uniformly on compact subsets of A("P). 
We shall, however, deal directly with the connected 

part Tc["P] of T["P]. Only the connected causal space­
time diagrams ~ should be relevant to Tc["P]' (A 
connected diagram is one for which the point set 
U L; is connected.) Let Cc("P) be the subset of C("P) 
which is formed by requiring also that the space­
time diagram ~ of Definition 3 be connected. The 
corresponding acausal set is 

Ac(1p) = {U lUi Cc("P)}' (4.7) 

The SAC condition is then defined as follows: 

Strong Asymptolic Causality. For any fixed product 
wavefunction 1p E $('UJ) the condition Tc["P; U'T] => 0 
is satisfied uniformly on compact subsets of Ac(1p). 

B. Consequences of SAC 

Consider displacements of the form 

Uo(K) = (a + tIkI' a + 12k2' .•. , a + tnkn), (4.8) 

where K = (kl' ... , k n ) is any point of supp 1p, a 
is any real four-vector, and the ti are real scalars. If 
the momenta of the external lines of a diagram ~ are 
given by K and the positions of these lines are specified 
by a set of displacements from a common origin of the 
form Uo(K) , then the external lines of ~ all pass 
through a common point. The set Co(tp) of all dis­
placements of the form (4.8) is then immediately seen 
to be a subset of Cc{tp). 

The sets Ac(K) and Cc(K) are defined to be the sets 
obtained by replacing supp 1p by K in the foregoing 
definitions. 

The set c+ is defined as the union of all positive-CI. 
Landau surfaces that are associated with connected 
nontrivial Landau diagrams. 

Theorem 2: [+ coincides with the set of all K E .A{, 

for which Cc(K) - Co(K) is nonempty. 

Proof' The positive-CI. Landau loop equations asso­
ciated with a diagram ~ are precisely the statement 
that the set of vectors 11; == CI.;p; fit together to form a 
nontrivial causal diagram ~. The conservation law 
constraints and mass-shell conditions are demanded 
both by the Landau equations and by the existence of 
~. Thus, the statement that there exists a nontrivial 
connected causal diagram ~ satisfying K(~) = K, 
where K(~) is the set of energy-momentum vectors 
associated with external lines of~, is equivalent to the 
statement that the Landau equations associated with 

diagram ~ have a positive-CI. solution at K.16 At a 
point K E (.A(, - .A(,o), where .A(,o is the subset of the 
mass-shell .A(, in which two or more initial-particle 
energy-momenta are collinear or two or more final­
particle energy-momenta are collinear, the existence 
of a nontrivial connected causal diagram~, satisfying 
K(~) = K, is equivalent to the fact that Cc(K) - Co(K) 
is nonempty. This is because the trivial connected 
causal diagrams ~ satisfying K(~) = K come only 
from Co{K) and each nontrivial one is given by some 
U in Cc(K) that is not in Co{K). At points Kin .,4(,0 the 
set Cc(K) - Co(K) is nonempty. (See Sec. 5, para­
graph 2.) But all points K E .A(,o clearly lie on some 
positive-CI. Landau surface. This completes the proof. 

This geometric interpretation of the Landau equa­
tions has been emphasized by Coleman and Norton.16 

We use it continually. In particular, the set of points 
lying on positive-CI. Landau surfaces is regarded as 
precisely the set of points K at which K = K[~(K)] 
for some causal nontrivial ~ = ~(K). 

We consider only connected diagrams, and by a 
Landau surface always mean a Landau surface 
associated with a nontrivial connected causal diagram. 

A first consequence of SAC is Theorem 3. 

Theorem 3: SAC implies that the scattering function 
Tc{K) is infinitely differentiable at all points of 
'UJ - [+. 

The proof is given in Appendix D. Theorems 2 and 3 
combine to say that the singularities of Tc(K) [or more 
precisely, the points at which Tc(K) is not infinitely 
differentiable] are confined to the positive-oc Landau 
surfaces. 

We next turn to points that lie on L+. Let .K be a 
point of [+. Let cu, = {U1 , ••• , USn- 4 } be any set of 
(3n - 4)n-particle displacements that define a simple 
local coordinate system at K through the equations 
z;. = U;. . K. Define the set 

r(cu,) = {UI U = ~t;,UA' It I = I}. (4.9) 

[The norm It I is the Euclidean norm of t = 
(11' ... ,/Sn-4)'] A product neighborhood oN' is a 
neighborhood such that for some product wave­
function X, supp X = X. For any product neighbor­
hood oN' define the closed set 

rc(cu,; .N') = {U I U E Cc(X) n r(cu,)}, (4.10) 

where supp X = .N' and the bar indicates closure. 

Definition 5: A point K of[+ is of Type I if and only 
if for every set cu, that can be used to define a simple 

16 R. E. Norton, Phys. Rev. 135, B1381 (1964); R. E. Norton and 
S. Coleman, Nuovo Cimento 38, 438 (196S). 
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coordinate system (di(K), nil, Do(K» at K there 
exists a product neighborhood X of K, (X n 'ill), C 

('ill n doCK»~, such that: (a) the set roC'lL; X) is 
contained in a finite number of closed disjoint subsets 
r:('lL; X); and (b) each of these sets r!('lL; X) can 
be contained in a corresponding set of the form 

r+('lL; ej) 

= {UI U = '1:.t;.U;., It I = 1, (t, e;) > O}, (4.11) 

where ej is some vector in RSn-4. A point K E e+ is of 
Type II if it is not of Type I. 

The set .A(,o C e+ of points K = (kl' ... ,kn) of 
.A(, at which two initial or two final-particle momenta 
k i are collinear consists entirely of Type II points. 
No other Type II points are known. The problem of 
showing that various points K E e+ - .At,o are of 
Type I is considered in the next section. 

The structure of Te(K) near Type I points is inti­
mately related to the geometric structure of the set 
ro('lL; X). Let Q be the unit sphere 

Q = {t It E Rsn-4, It I = I} (4.12) 
and let 

Q~('lL; X) = {t I t E Q, ('1:.t.P A) E r~('lL; X)}. 
(4.13) 

Because the various closed sets r~ are mutually 
disjoint, the corresponding compact sets Q! also have 
this property. It is therefore possible to construct open 
neighborhoods Wj C Q of the sets Q~ that have dis­
joint closures Wi' Moreover, because of condition 
(b) of Definition 5, the neighborhoods Wj can be 
constructed so that the polar cones 

C+(Wj) = {<51 <5 E Rsn-4, 

«5', <5) > 0 for all <5' E Wj} (4.14) 

are nonempty. Finally, let 

et(X) = {K IKE X, 

r~('lL; X) n Ce(K) is nonempty}. (4.15) 

The structure of Te(K) at Type I points is then given 
by the following theorem, which is proved in Appendix 
D. 

Theorem 4: Let K E c+ be a Type I point. Let 
(do(K), nil' De(K» be any simple coordinate system 
with local coordinates z;. = U;. . K. Let'lL = {Ul , ••• , 

USn- 4 }, and let X be some product neighborhood of 
K that satisfies the conditions of Definition 5. Let 
W j be the neighborhoods of the Q!('lL; X) defined in 
the preceding paragraph. Finally, let the SAC con­
dition be valid. Then there exists a neighborhood 

Xl of K, Xl C (X n 'ill), such that the restriction of 
Tc ["I'] to .'B(X 1) has the representation 

Tc[tp] = J dKtp(K)T~(K) 

+ 2 lim JdKtp(K)T:(K'(K, <5». (4.16) 
j 161 ... 0 

6EO+(roj) 

The summation runs over the indices that label the 
r~('lL; X), and the quantity K'(K, <5) is defined by 

K'(K, <5) = n ll(ni(K) + i<5). (4.17) 

The function ~(K) is infinitely differentiable on Xl' 
and the functions T~(K) are holomorphic on the sets 

Sj = {K IKE 'ille n deCK), 1m niCK) E c+(w j )}. 

(4.18) 
Moreover, each limit function 

r:(K) = lim r:(K'(K, <5» 
161"'0 

6EO+(wj) 

(4.19) 

exists and is infinitely differentiable on .N\ - et(Xl). 

Thus, aside from an infinitely differentiable back­
ground term, the amplitude Te(K) can be represented 
at Type I points as the sum of a finite number of terms, 
each with its own i€ prescription.17 

S. CAUSAL DISPLACEMENTS AS GRADIENTS 
TO LANDAU SURFACES 

In order to apply Theorem 4 at a point K E C+, one 
must establish that K is of Type I. This is done by 
exploiting the very close connection between the 
causal displacement vectors U at K and the normal 
vectors to the various Landau surfaces that pass 
through K. For example, when K belongs to only one 
positive-oc Landau surface e+[~], there is essentially 
only one causal displacement U at K, and this dis­
placement can be identified with the normal to 
e+[~]. The continuity of the normal then implies that 
K is of Type I. This result, and a number of related 
ones, are contained in the theorems that follow. 

First we note that all points of .A(,o are Type II 
points. [Recall that .A(,o is the set of all points K = 
(k l , ••• , k n) of .At, at which two initial- or two final­
particle momenta k i are collinear.] This result is seen 
as follows. Let K E .A(,o, and let kl and k2 be collinear 
initial-particle momenta. (Similar arguments hold for 
collinear final-particle momenta.) Then, for every prod­
uct wavefunction "I' that does not vanish at K, every 
€ > 0, and every U of the form U = (u, 0, ... ,0), 

17 This property is referred to as the "general i€ rule." See H. P. 
Stapp, J. Math. Phys. 9, 1548 (1968). 
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5 

FIG. S. A causal diagram ~ with two 
initial-particle momenta collinear. 

the various displaced velocity cones V.('Pi' ui) al­
ways intersect in a way that allows the conditions of 
Definition 4 to be satisfied with a diagram ~ of the 
type illustrated in Fig. 5. Thus, for any cu, = {UI , ••• , 

USn- 4} that defines a simple coordinate system at K, 
and for any product neighborhood X of K, it is 
always possible to find a connected path in rc(cu,; X) 
that connects (j = (u, 0, ... ,0) E rc(cu,; X) with 
- V E r.(cu,; X). For this reason condition (b) of 
Definition 5 cannot be satisfied. 

To classify points K E 'ill that do not lie in .ALo, 
~me additional notation is introduced. The symbol 
~ represen,!s a fixed ~ausal space.:time diagram. The 
symbol V(~) = (VI(~)' ... ,vm(~» represents the set 
of space-time vectors that give the positions of the 
vertices of~. The symbol K(~) = (kl(~)"" ,kn(~» 
represents the set of mathematical momenta associated 
with the external lines of~. 

Definition 6: A diagram ~ is similar to a diagram ~ 
if and only if its lines and vertices can be labeled so 
that ~ and ~ have the same matrix" of structure con­
stants "if"' and the same types of particles associated 
with corresponding lines. The set of causal diagrams 
similar to ~ is denoted by [~]. 

This definition of ~ E [~] does not require V(~) to 
coincide with V(~), nor K(~) to coincide with K(~). 
It does require each line of ~ to have a positive time­
like ~age in any diagram ~ E [15]. Moreover, any 
line Li of ~ and its image L; in ~ E [1>] must be 
associated with the same type of particle. 

Definition 7: A contraction ~' of 15 is a nontrivial 
diagram lying on the boundary of [1>] that is formed 
by shrinking t~ points some, but not all, of the in­
ternallines of~. The notation ~' c: 1> means that~' 
is a contraction of 1l. 

Definition 8: The positive-IX Landau surface C+[~] 
is the set of points K such that K = K(15) for some 

~ E [1>]: 

C+eD] = {K I K = K(~), ~ E [1l]}. (5.1) 

The restricted positive.:.1X Landau surface ct[~] is the 
set of points K of C+[~] that do not lie on C+[~'] for 
any contraction ~' of 1) : 

ct[il] = C+eD] - U C+[~']. (5.2) 
:D'cil 

It is clear from Definition 8 that the set c+ is the 
union of the restricted positive-oc surfaces Ct. 

The restricted surfaces ct are of interest because of 
the following result: 

Theorem 5: If ~ is any fixed nontrivial connected 
causal diagram, and if K E (ct[1l] - .ALo), then there 
exis.!s a neighborhood .N' c: ('ill - .;\(,0) of K in which 
ctr~] is an analytic submanifold of codimension J.1o 

This theorem, which is proved in Appendix E, means, 
in particular, that nonmanifold points such as acnodes 
and CUSpSlS cannot lie on c+ - ';\('0' The set c+ - .;\(,0 

is the union of manifolds of codimension 1 in 'ill. 
By virtue of Theorem 5, the normal vector to a 

surface ct[~] is well defined (to within a scale factor) 
at each point K fj: .;\(,0 of that surface. The content of 
(b) of the next theorem is that this normal vector 
(appropriately scaled) is the n-particle displacement 
U = Cul , ... , un) that generates (by displacing lines 
ori~i~ally passing through some common origin) the 
positlOns of the external lines of any diagram ~ that 
satisfies KC~) = K. [Henceforth, the phrase "U 
generates :n" will mean that U = (UI, .•. , un) gener­
ates,. by dIsplacements ul , ••• , un of lines originally 
passmg through the origin, the positions of the external 
lines of ~.] 

Theorem 6: Let ~ be any fixed nontrivial connected 
causal!pace-time diagram, and let K E 'ill be a point 
ofCt [~]. Then there is a fu114n-dimensional neighbor­
hood X(K) of K and a real analytic function A(K), 
holomorphic in Kover X(K), such that: 

(a) The gradient V' A(K) is nonzero at each point of 
X(K) and 

ct[ili] n .N'( K) = {K IKE 'UJ n X( K), A(K) = O}; 

(5.3) 

. (b) if K(~) E ct[!D] n .N'(K) for some~ E [~], and 
If U = (u l , ••• , un) is a set of n displacements that 

18 R. J. Eden, ~. V. La~dshoff, D: I. Oli~e, and J. C. Polking-
horne, The AnalytIC S-Matnx (Cambndge Umvettity Press London 
1966), p. 104. ' , 
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generates the diagram !D, then V must have the form displacement V that generates !D is of the form 

v = AV A(K(!D» + Vo(K(!D» , (5.4a) 

where A> 0 and Vo(K(!D» is of the form (4.8). In 
other words, 

(5.4b) 

where A, aV
, and ti are real constants that depend only 

on the indicated indices and A is strictly positive. 

If two surfaces Ct [!DI l and Ct [!D2l coincide in some 
neighborhood of K E (C+ - .Ato), the two surfaces 
cannot be oriented in opposite ways. This follows 
from Theorem 7. 

Theorem 7: Let !Dl and !D2 be two fixed nontrivial 
connected causal space-time diagrams, and let 
K E (C+ - .Ato) belong to both Ct[!D1l and Ct[!D2l. 
Let the corresponding real analytic functions from 
Theorem 6(a) be A1(K) and A2(K). If Ctt!DI l and 
Ct[~2l coincide in some neighborhood oN' c 'ill of K, 
then VAleK) = AVA2(K) + Vo(K), where A > 0 and 
Vo(K) is of the form (4.8). 

A proof of Theorem 7 is given in Appendix F. 
At points K E 'ill not in .Ato, displacements Vo(K) 

of the form (4.8) produce no essential changes in a 
diagram !D. Their only effects are a common trans­
lation of all external lines of!D and displacements of 
these lines along themselves. The parameter A fixes the 
scale of the diagram. Thus, Theorem 6(b) says that if 
K = K(!D), where !D E [1)] and K E I:t[1)], then the 
positions of the external lines of 1> are obtained 
(essentially uniquely) by regarding the various com­
ponents of V A(K) as the displacements of the corre­
sponding external lines of 1>. Theorem 7 says that the 
sense of the causal direction along V A(K) is an 
intrinsic feature of the surface Ct [1) 1; this sense does 
not depend on the particular class of similar diagrams 
[1)] that might be used to define the given surface 
Ct[1)l. 

To classify a point K E (C+ - .Ato) it is necessary to 
determine the complete set of displacements V that 
generate diagrams 1> that satisfy K(1)) = K. The 
following two theorems give the structure of these 
sets. The first theorem is special; the second is general. 

Theorem 8: Let 1) be a fixed nontriviaJ connected 
causal space-time diagram, and let K(1) = K be a 
point of 'ill. If K = K(1)), where 1> belongs either to 
[1)] or to [!D'] for some contraction !D' of 1), then any 

u = ! AgVAiK) + Vo(K), (5.5) 
II 

where Ag ~ 0 for all g, and Vo is of the form (4.8). 
The (finite) sum in (5.5) runs over the indices g that 
label diagrams 1>g C 1) or 1>g = 1) for which 
KECt[1>II]' 

This result is proved in Appendix E. 

Theorem 9: Let K belong to c+ - .Ato. Let I be a 
minimal set of indices g such that any restricted sur­
face Ct[1>] that contains K coincides near K with one 
of the surfaces Ct[!DII] for som! g E 1. (The set I is 
known to be finite. 19) If K = K(1)) for some connected 
causal space-time diagram 1), then any displacement 
V that generates 1) is of the form 

V = ! AgVAiK) + Vo(K), (5.6) 
gel 

where A.g ~ 0 for all g and Vo(K) is of the form (4.8). 

Theorem 9 is a trivial consequence of Theorems 7 and 
8. The characterization (5.6) of the displacements that 
generate diagrams 1> for which K = K(1)) will be used 
to show that almost all points of C+ - .Ato are of 
Type 1. 

To show that a point K of C+ - .Ato is of Type I, it is 
not necessary to consider the sets ro('lL; oN') for all 
sets'll that define simple local coordinate systems at 
K or for product neighborhoods oN' of K. It is sufficient 
to consider instead the sets 

ro('lL; K) = {V I V E Co(K) 11 r('lL)} (5.7) 

for anyone (fixed) set ctL. 

Theorem 10: Let ctL = {Ol ' ... , Oan-4} define a 
simple coordinate system at K E (C+ - .Ato). Then the 
point K is of Type I if and only if ro(ctL; K) can be 
covered by a finite number of disjoint closed subsets 
r~(ctL; K) of r(ctL), each of which can be contained 
in a corresponding set of the form (4.11). Theorem 4 
remains true if the Wj are taken to be open neighbor­
hoods (with disjoint closures) of the corresponding 
sets n~(ctL; K). 

This theorem is proved in Appendix F. 
Theorem 10 shows that the structure of Co(K) 

determines whether a point K E C+ - .Ato is of Type I. 
To determine the structure of CC<K) at these points 
we use the following theorem, which is proved in 
Appendix F. 

1. H. P. Stapp. J. Math. Phys. 8, 1606 (1967). 



                                                                                                                                    

MACROSCOPIC CAUSALITY AND SCATTERING AMPLITUDES 839 

Theorem 11: If K belongs to C+ - .A(,o, then the set 
Ce(K) consists of all displacements U that generate 
connected causal diagrams j) that satisfy K = K(j). 

Combining Theorems 9, 10, and 11, we obtain the 
following theorem. 

Theorem 12: Let K be a point of L+ - .A(,o' Let I 
be a minimal set of indices g such that any restricted 
surface ct[j)] that contains K coincides near K with 
one of the restricted surfaces ct [j)g] for some gEl. 
If the vectors VAg(K) and the (4n-dimensional) 
vectors Fp (1 ~ p ~ n + 4) defined by 

(FX = ~p,.k~, 1 ~ p ~ n (5.8a) 

and 

are linearly independent, then the point K is of type 
I. Furthermore, the representation of Te(K) in Theorem 
4 has only one boundary-value term at K. 

The proof is trivial. The vectors Fp form a basis for 
CoCK). If the vectors V AaCK) and Fp are linearly 
independent, there exists a set'l1 = {U1 , ••• , U3n- 4} 

that contains all the VAg(K) , gEl, and defines a 
simple coordinate system at K (Appendix B). The set 
Ce(K) n r('l1) is then trivially contained in a single 
set r+('l1, e) of the form (4.11). This implies that K 
is of Type I and that only one boundary-value term is 
required in the representation (4.16) of Te(K).20 

Theorem 12 is applicable, in particular, to the case 
where K belongs to only one surface ct (j)]: 

Corollary: If only one surface ct[1>] passes through 
K E (C+ - .A(,o), the point K is of Type I. Moreover, 
only one boundary-value term is needed in the repre­
sentation (4.16) of Te(K). 

In the situation described in the corollary only one 
boundary-value term n(K) is needed in Theorem 4. 
By taking the neighborhood oN' of Theorem 4 small 
enough, the region of holomorphy of n(K) can be 
expanded to include any given point in !l.c(K) n 'ille 

in the upper half-plane of a(K; K) = VA(K) . K. The 
argument is similar to that in Theorem lA and will not 
be repeated. 

The corollary includes, of course, the special case in 
which C+ consists near K of a single restricted surface 
Ct[1>].21 It also includes more complicated cases. For 

10 Points described by Theorem 12 are almost-simple points 
in the terminology of Ref. 17. 

11 Such points are called simple points in Ref. 17. 

example, a point K E (1:+ - .A(,o) that lies on the edge 
of the surface Ct[j)T] of the triangle diagram j)T does 
not lie on ct[j)J It lies on the surface ct[j)] of a 
contraction j) ofj)T' If these two surfaces are the only 
parts of C+ that penetrate some neighborhood of K, 
then the corollary applies. 

The hypothesis of the corollary is satisfied at al­
most all points K of c+ - .A(,o' This is a consequence of 
the fact that only a finite number of distinct surfaces 
CnD] intersect any bounded neighborhood oN' c 'ill 
of K.19 The union of their intersections is therefore 
of zero measure in oN' n C+, and the complement of 
that union contains almost all points of oN' n C+. That 
is, in any bounded open set oN' of 'ill, the set of points 
K E (C+ - .A(,o) which lie on only one surface Ct con­
tains almost all points of oN' n (C+ - .A(,o). 

A second consequence of Theorems 9, 10, and 11 
is that if all the surfaces ct[j)] that pass through K 
come from diagrams j) that are contractions of the 
same fixed diagram 1>, then K is of Type J.22 

Theorem 13: A point K E (C+ - .A(,o) is of Type I if 
there is a nontrivial connected causal space-time 
diagram j) such that the diagrams j)g of Theorem 9 
are all contractions of j). In such a circumstance only 
one boundary-value term is needed in the representa­
tion of Theorem 4 of Te(K) at K. 

The proof is given in Appendix E. 
It is not known if all points of L+ - .A(,o are of 

Type I. Any counterexample would have to lie on at 
least four different surfaces ct[j)g]. Two of these j)11 
would have to be contractions of some diagram j)1 
and two would have to be contractions of some other 
diagram j)2' But all four j)g could not be contractions 
of any single diagram. We have not succeeded in 
finding such a case. In any event such points would be 
rare, and in a sense accidental, because their existence 
requires the intersection of surfaces ct[j)g] corre­
sponding to contractions of one diagram j)1 to 
intersect the intersection of surfaces ct[j)g] corre­
sponding to contractions of another "unrelated" 
diagram j)2' Two unrelated diagrams are diagrams 
that are not both contractions of any single diagram. 
It seems probable that singularities associated with 
unrelated diagrams will be additive and hence inde­
pendent. A proof should emerge from the study of 
discontinuity formulas. That, however, is a subject in 
itself. 23.24 

•• It is a semisimple point in the terminology of Ref. 17 . 
.. J. Coster and H. P. Stapp, J. Math. Phys. 10, 371 (1969). 
It J. Coster and H. P. Stapp, "Physical-Region Discontinuity 

Equations, Lawrence Radiation Laboratory Report UCRL-18512 
(submitted to Phys. Rev.). 
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A concrete example of the analysis of this section is 
given in a nonmathematical version of the present 
work prepared by the first-named author and pub­
lished elsewhere.25 

6. SUMMARY 

In this work the relationship between continuity 
properties of scattering functions in the physical 
region and macroscopic space-time phenomena has 
been examined. It was shown how singularities on 
Landau surfaces can be regarded as caused by proc­
esses in which the transfer of energy-momentum is 
carried by physical particles. 

The algebraic equivalence of the Landau equations 
and corresponding space-time diagrams was em­
phasized earlier by Norton and Coleman. I6 The 
present work extends the algebraic result of Norton 
and Coleman by showing (in the course of proving 
Theorem 1) that if the scattering functions are infinitely 
differentiable except onthe Landau surfaces, then the 
transition amplitude drops off faster than any inverse 
power of a scale parameter, unless the space-time 
collision regions are situated so that the momen­
tum-energy can be carried from the initial particles to 
the final particles by means of physical particles. We 
also obtain the more difficult converse: If transition 
amplitudes fall off faster than any inverse power of 
the scaling parameter when the space-time collision 
regions are not causally connected via physical 
particles, then the scattering functions must be 
infinitely differentiable except on the Landau surfaces. 
Moreover, apart from infinitely differentiable singu­
larities, the iE prescriptions associated with the 
Landau surfaces coincide with those of perturbation 
theory. 

Note Added in Proof: The infinitely differentiable 
background term is removed in a recent work by 
Iagolnitzer and Stapp. 

APPENDIX A 

The proof that the weak asymptotic causality con­
dition is valid in nonrelativistic quantum mechanics 
is based on an inequality of Brenig and Haag. 26 Let 
cp? be the state at time t that would develop from an 
asymptotic initial-particle state cp if there were no 
interactions between the particles, and let CPt be the 
corresponding state if there are interactions. Similarly, 
let "P~ be the state at time t that would develop into the 
asymptotic final particle state "P if there were no 
interactions, and let "Pt be the corresponding state if 

16 C. Chandler, Phys. Rev. 174, 1749 (1968). 
u W. Brenig and R. Haag, Fortschr. Physik 7,183 (1959). 

there are interactions. Then the transition amplitude 
<"PI TiCP) can be written 

("PI T Icp) = <"PI! CPt) - <"P~! cp~), (AI) 

where t is any arbitrary time. From (AI) an inequality 
follows: 

I("PI T Icp)1 ~ II "PI - "P~lIlIcpt - cp~1I 

+ lI"Pt - "P~II + II CPt - cp~ll. (A2) 

The norm 11'11 in (A2) is defined for all functions 
I(xl ,"', Xm , t) by 

IIltll = <It lJi 
== {f dXI ... dXm I/(xl , ... ,Xm , t) 12t (A3) 

and it is assumed that cp~ and "P~ have unit norms. The 
quantities II"Pt - "P~II and Ilcpt - cp~ II are bounded by 
the inequalities26 

II CPt - cp~1I ~ f",dt' IIVcp~,11 (A4a) 

and 

(A4b) 

where V is the interaction Hamiltonian. 
Let the asymptotic initial and final particles now be 

displaced by amounts Uj'T and let the displaced initial 
and final particles be represented by cpUT and "PUT. For 
these displaced particles, the inequality (A2) leads to 
the following inequality: 

IT[cp"P; U'T]I ::::;; F[cp; U, 'T]G["P; U, 'T] 

where 

and 

+ F[cp; U, 'T] + G["P; U, 'T], (A5) 

f
<l+E)T 

F[cp;U,'T] = _'" dt'IIVcpf,T,oll 

G["P; U, 'T] = ('" dt'IIV"Pf,T,oll. 
J<I-E)T 

(A6a) 

(A6b) 

Here t is any arbitrary time, the number E is positive, 
and the scale parameter 'T is greater than 1. 

If the potential V has a finite range R, the integrals 
that define IlVcpp·oll and 11V"P~Jr·oll are restricted to 
the domain 

A(R) = {(Xl" .• ,Xm) !Ixi - Xjl 

~ R for all i andj}. (A7) 

(Here it is assumed that there are m particles in aU 
stages of the reaction; no creation or annihilation of 
particles is allowed.) Thus, the quantity II Vcp~lr.oll has 
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the form 

IIV c/>J!,:,oll = {'Tam r dxl ' •• dXm 
)A(RT-1) 

X /V(XI'T, ... ,Xm'T). IT "iii[xi - Ui]'T, [l' - UiO]'T)/2}!. 
InItIal 

(A8) 

Now the wavefunctions "iii([X - ui]'T), considered as 
function of X, collapse uniformly into the cones 
V.(VJi; ui) as 'T becomes infinite. Consequently, if U 
belongs to A(l, E, c/>VJ) so that the initial particle cones 
V/VJi; u;) are well separated before (l + E), then for 
some sufficiently large f the product wavefunction in 
(A8) is of rapid decrease in 'T (and 11'1) uniformly in 
(Xl' .•. , Xm, l') for (Xl"'" Xm) in A (Rf-l) and 
l' ~ (l + E). Thus if V is bounded (or even merely 
integrable), the function F[c/>; U, 'T] (and by similar 
arguments G[VJ; U, 'T)) is of rapid decrease when U 
belongs to A(t, E, c/>VJ). Then the inequality (AS) im­
plies that the weak asymptotic causality condition is 
satisfied for any given U in A(t, E, c/>"P). 

To extend the analysis to compact sets r of 
A(l, E, c/>VJ) it is only necessary to observe that the 
velocity cones V.("P i , ui ) never come closer in the 
appropriate regions Xo ~ (l + E) and Xo ~ (i - E) 
than some distance 6(r). The number f is chosen so 
that R « b(r)f, and the analysis proceeds as before. 
This insures that the WAC condition is satisfied 
uniformly on compact subsets of A(t, E, c/>VJ). These 
arguments can be extended also to the case of po­
tentials that have decreasing exponential bounds at 
large r. 

The same ideas can be formulated in a classical 
theory by considering a statistical ensemble of 
classical experiments in which the momentum-space 
probability functions PiCk) of the initial and final 
particles have small compact support and in which 
the spatial distributions Pi(x, t) at time t = 0 fall off 
faster than any power of lxi-I. 

Let Vi(x) be the velocity cone that corresponds to 
the support of PiCk) and that has its tip at x = (xo, x): 

V;(x) = {x' I x' - x = A(wi(k), k), 

A E R, k E supp Pi}' (A9) 

Here wiCk) is (k2 + m~)!. Furthermore, let 

V;(x; r) = U V;(xo, x'). (AW) 
Ix'-xl=:;, 

Now, if the trajectory of the ith freely moving particle 
passes through a point x' = (xo, x') for which 
lx' - xl < r, then the trajectory must lie entirely in 
V;(x; r). This means that the fraction of the trajec­
tories in the statistical ensemble for which particle i 

remains always inside Vi(x; r) is just 

P;(x; r) = r dx'Pi(x', xo). 
)Ix'-xl::;, 

(All) 

The rapid fall off of Pi (x, 0) for large Ixl implies that 

Di(r'T) == I - Pi(O; r'T) (AI2) 

goes rapidly to zero as 'T becomes infinite: Di(r'T) => O. 
The stipulation in the weak asymptotic causality 

condition is (essentially) that the displaced velocity 
cones of the initial particles do not intersect for 
t ~ E'T and that the displaced velocity cones of the 
final particles do not intersect for t ~ -E'T. The 
condition that the displaced cones do not intersect in 
these regions means that when 'T = I the minimum 
(Euclidean) distance between the cones in the regions 
l ~ E and i ~ - E is nonzero. If Do is this minimum 
distance, the minimum distance when 'T is arbitrary is 
Do'T, which becomes infinite as 'T becomes infinite. 

Since the displaced cones Vi(Ui'T) have a minimum 
spatial separation Do'T in the appropriate regions 
±t ~ E'T, they can be replaced by slightly larger 
regions Vi(Ui'T; r'T) that have a minimum spatial 
separation do'T > O. 

Let the initial and final particles of the classical 
treatment be subjected to the displacements Ui'T. The 
corresponding displaced spatial distributions Pi'T(X, t) 
are given by 

(A13) 

Thus, the probability that the freely moving particle i 
remains always inside Vi(Ui'T; r'T) is 

Pi'T(U'T; r'T) = r dx'Pi'T(X', UiO'T) = Pi(O; r'T). 
Jlx'-uiTI <rT 

(A14) 

The probability that every particle i remains inside its 
displaced region Vi(U'T, r'T) is TIi Pi(O; r'T). This num­
ber rapidly approaches unity as 'T becomes infinite. 

Let us suppose that the interaction between the 
particles has a finite range R, in the sense that a set of 
particles do not interact unless the distance between 
some pair of them becomes less than R. But for 
sufficiently large 'T the distance do'T of closest approach 
of the regions Vi(Ui'T; r'T) is greater than R. Thus for 
this value of 'T there will be no interaction between 
initial particles in the region t ~ E'T for those members 
of the ensemble for which each initial particle is in its 
region Vi(Ui'T, r'T). The fraction of the members for 
which these conditions are realized (simultaneously 
for all particles) rapidly approaches unity. Conse­
quently, the probability that the initial particles inter­
act in t ~ E'T rapidly approaches zero as 'T becomes 
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infinite. Similarly, the probability that the final par­
ticles interact in t ~ - ET rapidly approaches zero as 
T becomes infinite. 

The fact that the fraction of members of the en­
semble that have reactions in t < 0 decreases rapidly 
as T becomes infinite means that the difference between 
the classical joint probability function 

PgT(X, V, t) = PgT(Xl' ... ,Xm ; VI' .•• ,Vm ; t) 

(Al5) 
and its unperturbed value 

pf;;T.O(X, V, t) = II pJJr.O(xi , Vi; t) (Al6) 
Initial 

Proof" Let the n-tuples K = (kl' •.• , k n) of com­
plex momentum vectors be associated with points 
z = (ZI' ... ,z4n) of C4n through the equations 

Z4i+1l-3 = kill' 1 5: i 5: n, 0 5: f-t 5: 3. (Bl) 

Then the set .A(,. can be written as 

.A(,. = {z I z E C4n ,fl(Z) = ... = fn+4(z) = O}, (B2) 

where the functions /;(z) are defined by 

3 

J;(z) = ! ! gllll(Z4i+1l_3)2 - tm~, 1 5: i 5: n, (B3a) 
11=0 

and by 

l
must, when integrated, become small as T becomes J;(z) = gi-n-l.i-n-l i z4i+i-n-4, n + 1 :5: i 5: n + 4. 
arge: ;=1 

I dX dV IPf;;T(X, v, 0) - pf;;T.O(X, v, 0)1 ~ O. (Al7a) 

Similarly, we must have 

is 

I dX dV IP~';t(X, v, 0) - P~';iO(X, v, 0)1. ~ O. 

(Al7b) 

The classical expression for the overlap probability 

T = I dX dV min {Pf;;T(X, V, 0), P~';t(X, V, On. 
(Al8) 

This gives the fraction of the members of the "in" 
ensemble that can occur as members of the "out" 
ensemble, or conversely. (If in a certain "bin" the 
in ensemble has n1 members and the out ensemble has 
n2 members, the minimum of n1 and n2 is the maximum 
number of members common to both ensembles.) It 
follows from (A17) that T differs from its unper­
turbed value 

TO = I dX dV min {pf;:T.O(X, V, 0), P~u"tO(X, V, O)}, 

(Al9) 

by a term that goes rapidly to zero as T becomes 
infinite. 

Thus, for a fixed U in A(O, E, 'IjJ), the weak asymp­
totic causality condition is valid in a classical model 
with finite range interactions. The analysis is extended 
to compact sets r of A(O, E, 'IjJ) in the same way as in 
the quantum mechanical case. 

APPENDIX B 

By way of establishing notation, we give a con­
structive proof of the following well-known proposi­
tion: the restricted complex mass-shell 'ill. is a 
(3n - 4)-dimensional analytic submanifold of o.n. 

(B3b) 

(The metric is gOO = _gll = _g22 = _g33 = 1.) 
Consider the Jacobian matrix 

of; 
Ji;(z) = - (z). 

OZj 
(B4) 

Explicit computation shows that the set of points of 
.A(,. where rank J is less than n + 4 is exactly 
.A(,e - 'ille. Therefore, at every point K (or z) of 'ille 
a (nonsingular) set of coordinates for C4n can be 
defined by 

Fi(Z) = J;(z), l:5: i 5: n + 4, (B5a) 
and 

4n 
Fi(z) = !Eijz j , n + 5 5: i 5: 4n. (B5b) 

;=1 

The (3n - 4) fixed real vectors 

Ei = (Eil' ... , E;4n) (B6) 

appearing in (B5b) are any vectors which, together 
with the n + 4 vectors 

Ei(Z) = (0: (2), ... ':l0J; (2»), l:5: i 5: n + 4, 
uZi uZ4n 

(B7) 

form a set of linearly independent vectors. The func­
tions Fi define a coordinate system in a sufficiently 
small neighborhood !leeK) c C4n of K = K(z). It 
follows27 from (B2) that the set !leCK) fl 'ill. is a 
(3n - 4)-dimensional analytic submanifold of C4n. 
Since this construction can be made for any point 
K E 'ill., the proposition is proved. 

Remark: The mapping F: C4n ~ C4n defined by 
(B5), and hence also its inverse, is real analytic. It 

21 Reference 10, p. 18. Following other authors we use the terrni­
nology analytic submanifold. instead of complex submanifold. 
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follows that the mapping fig introduced in Sec. 2B 
is also real analytic. 

Remark: The vectors Ek for n + S ~ k ~ 4n can be 
associated with n-particle displacement vectors V;. = 
(u).1' ... ,u;'n)' 1 ~ A ~ 3n - 4, in the following 
way: 

U~j = E).+nH.4J+,,-3, 1 ~ j ~ n, 0 ~ /-l ~ 3. (BS) 

The local coordinates (BSb) of'ille then become 

F;. = V;. . K = L u~;k;1' ' 1 ~ A ~ 3n - 4, (B9) 
;.1' 

where the bar indicates the relabeling of indices. Thus, 
the local coordinate system constructed in the proof 
of the proposition is a "simple" coordinate system. 
[See Eq. (2.13).] 

Remark: For any point K E 'ill the set of 3n - 4 
linearly independent vectors V;. defined above pro­
vides a unique decomposition of any displacement 
vector U into the sum 

3n-4 

V = L t;.V;. + Vo(K), (BlOa) 
;'=1 

where 
vg;(K) = f/i:j + a", 1 ~ j ~ n, (BlOb) 

is a causal displacement for any cP such that supp cP 
contains K. The displacement Vo(K) displaces each 
particle of the set specified by K along its own trajec­
tory, and gives a single over-all displacement to all 
particles. Thus Vo(K) is a member of the causal set 
CoCK) defined below Eq. (4.S). 

The Z; defined above are simply components of the 
vectors k i • In the rest of the paper the z's denote the 
(3n - 4) variables of a real local coordinate system. 

Notice that Vo(K) belongs to the null space of the 
matrix ()K/()z. That is, 

Vo[K{Z)] . oK{Z) == L vg
j 

ok;" = 0, 
oz;. jl' ()z;. 

1 ~ A ~ 3n - 4. (Bll) 

This follows from the restrictions on K imposed by 
(B2). Moreover, at any point of 'ill all vectors in the 
null space of oK(2)/()Z are of the form Vo[K(z)], since 
this null space has dimension n + 4. 

APPENDIX C 

A. Proof of Theorem 1 

Let AU, E, cp) be the set described in assumption 
(c). This set contains - V' A(K), and is thus nonempty. 

It is, in fact, open in the topology induced by the 
Euclidean norm 

IIV - V'II = {t; lUi. - u;.12
( (Cl) 

To see this, define for any neighborhood N of any 
displacement V in A(l, E, cp) the set 

(C2) 

Every two initial-particle cones P'.(CPi; iii)and P'.(CPi; iii) 
are separated by some finite (Euclidean) distance do in 
j)-(t, E). Therefore the sets P'.(cpi,N) and P'.(cp;,N) 
are separated in j)-(t , E) by a distance d~ ~ (do - 2a), 
where a is the diameter of N. If a is chosen small 
enough, then the distance do - 2a is positive, and the 
sets P'.(CPi' N) and p'.(cp;, N) are disjoint in j)-(l, E). 
Similar arguments hold for each pair of initial 
particles and each pair of final particles. Thus every 
U in some neighborhood of V belongs to A(t, E, cp). 
Since V is an arbitrary point of A(l, E, cp), this set is 
open. 

According to hypothesis, the displacement V = 
- V' A(K) belongs to A(t, E, cp). Since A(t, E, cp) is 
open, there exists a neighborhood N of V with com­
pact closure N contained in A(t, E, cp). The WAC 
condition then requires that T[cp; Ur] => 0 uniformly 
on N. The symbols Nand N hereafter designate these 
two sets. 

If the relation 
supp 1p c supp cP (C3) 

is true, the relation 

A(t, E, cp) c A(t, E, 1p) (C4) 

is also true. Thus it follows from WAC that the rapid 
decrease T[1p; Ur] => 0 is obtained uniformly on N 
for any fixed product wavefunction 1p in $('ill) with 
support satisfying (C3). 

Let '\.L = {VI' ... , V3n- 4 } be any set of n-particle 
displacements that define a simple coordinate system 
(ae(K), fig, De(K» with local coordinates F;. = 
V;.' K, and let 

r('\.L) = {Vi V = '1:.t;.V;., t 

= (tl, ... , t3n- 4) EO}, (C5) 

where 0 is the unit sphere in R3n-4. Then, the set 
r('\.L) is contained in the union of the finite number of 
open sets r;=('\.L) constructed as follows. It is shown 
in Appendix B that the displacement V' A(K) can be 
written as 

V'A(K) = V'lA(K) + Vo(K) , (C6) 

where Vo(K) is a causal displacement belonging to 
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(C7) 

The vector Y = (Yl' ... ,YSn-4) must be nonzero, 
since otherwise - V' A(K) would not belong to 
AU, €, ~). Let the normalization of A(K) be such that 
Y == el is a vector of 0, and let e2 , ••• , eSn- 4 be any 
3n - 5 other vectors in 0 which, together with el, 
form an orthonormal basis for RSn-4. For any oc, ° < IX < I, a finite open covering of 0 is given by the 
sets 

and 
o~ = {t I tEO, ±(t, ell > (1 - o(

2)1} (C8a) 

0; = {t I tEO, ±(t, ep ) > f3(r - I)-I}, 

2 ~ p ~ 3n - 4 = r, (C8b) 

where oc > f3 > 0, and (t, t ' ) is the usual inner product 
(t, t ' ) = ~t ;,t~ of RSn-4. The set rC'lL) is thus covered 
by the open sets 

r;c'lL) = {V I V = ~t;,V;" t E ~;}. (C9) 

The crucial step is to show that for any ° < oc < I 
there is some (real) neighborhood 

Xo c (X n D.~(K) n D.c(K) n supp ~) 

of K, such that for any fixed product wavefunction tp 

in .'A(Xo) the transition amplitude T[tp; U7'] is of 
rapid decrease (T[tp; V7'] => 0) uniformly on 

roC'lL) = r«lL) - riC'lL). (CIO) 
Since 

it is sufficient to prove the uniform rapid decrease on 
the closed sets ri('lL) and r~('lL), (p ~ 2). 

For any fixed product tp E .'A('ill) satisfying (C3) the 
uniform rapid decrease of T[tp; V7'] on ri('lL) is a 
consequence of the WAC condition, provided oc is 
small enough so that ri('lL) C [N ("\ r('lL)]. (If the 
original oc is not small enough, then a smaller one can 
be used.) To use this fact let C) c supp ~ be an open 
set with the property 

C) n 'ill c (X n D.~(K) n D.c(K», 

and let C)' c C) be an open neighborhood of K with 
the property C)' c supp tp' c C), where tp' is a product 
wavefunction. Let ,N'l be the intersection Xl = 
C)' n 'ill of C)' and 'ill. Finally, let X E .'A('ill) be a 
product wavefunction that is unity in supp tp' and zero 
outside supp~. Then for any product tp in .'A(Xl ), the 
wavefunction ijJ == tpx satisfies T[tp - ijJ; V7'] == 0. 
Since ijJ is a product wavefunction in .'A('ill) that 

satisfies (C3), T[ijJ; U7'] is of rapid decrease uniformly 
on riC'lL). Thus T[tp; U7'] also has this property. 

The uniform rapid decrease on the other sets 
r;:=, p ~ 2 is a consequence of the smoothness require­
ment on T(K). Let Z = (Zl' ••• ,ZSn-4) be the local 
coordinates for which T(z) is smooth in the variables 
(Z2' ••• ,ZSn-4)' Let U be some displacement in r;= 
and let h,,(V) be the coordinate transformation defined 
by 

'1 = Zl' 

,,, = V· K(z), 

(CI2a) 

(C12b) 

'p = Iep;,V;,' K(z), 2 ~ p ~ 3n - 4, p =F- (J, 
A 

(C12c) 

where the vectors ep = (epl ' ... ,ep •sn- 4) are the 
orthonormal basis vectors used in (C8), and the VA 
are as in (C5). Define 

~p(z) = ! epAV;, . K(z) = Vp' K(z), 
;, 

1 ~ p ~ 3n - 4, (C13) 

and let Q(z) be the determinant of the square matrix 
QPA = o~p/oz;,. Finally, for any K in Xl (with Xl 
taken sufficiently small) write 

(CI4) 

where Uo(K) belongs to eo(K). The functions g/K) 
are continuous, and g/K) = bpI' Using the readily 
verified relation Uo' oK/oz = 0, one finds by explicit 
calculation that the Jacobian H,,(z, V) of the trans­
formation h,,(U) is 

H,,(z, U) = Q(Z)(gl(Z)X" - ga(z)Xl), (CI5) 

where V = ~Xp Vp' Thus if U belongs to r;;, then 
the Jacobian does not vanish on the set 

D,,(K) = {z I K(z) E Xl == Xl(K), IQ(z)1 > €, 

Ig,,(z)gil(z)I < f3(r - I)-I}. (CI6) 

[The open sets D,,(K) always contain Z, and hence 
are nonempty, for all (J ~ 2.] Therefore, if z belongs to 
D" and U belongs to P;; then the holomorphic trans­
formation h,,(U) can be inverted, giving the z;, = 
Z;, a, X) as hoi om orphic functions of , and X. Then 
because Zla, X) is simply '1, the smoothness of T(z) 
in the variables (Z2' •.• , ZSn-4) implies the smoothness 
of T'a, X) = T(za, X» in the variables a2,"', 
'an-4' X) when' belongs to h"(V)D,, and V belongs 
to r;;. The proof of this is deferred to the end 
(Lemma 1). 

Let X" = nn(D,,). Then for U in r;; and tp in 
.'A(Xa), the amplitude T[tp; V7'] can be written 

T[tp; V7'] = f d,,,e-iVfa,, , X), (CI7) 
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where 

faa, X) = f d'l ... d'a_l dta+l ... dt3n-4H;(t, X) 

x J'(t, X)ip'(t, X)T'(t, X) (C18) 

is a distribution in t that depends on X. The function 
J is the holomorphic Jacobian associated with the 
local coordinate system (~~(K), II ir, D~(K». The 
holomorphy of H;(t, X) = Ha(z(t, X» andJ'(t, X) = 
J(za, X», and the smoothness of Tand ip = "P 0 llir, 
imply the infinite differentiability off in ta and in X 
for all U E r.;=. (See Lemma 1.) The function f must 
also have compact support since the function 

ip'a, X) = ip(z(', X» 

does. It follows therefore, for all U in r.;=, that all 
derivatives anf/at~ are absolutely sum mabie and hence 
that the integrals 

[n(X) = f dta I :;~(ta, X) I (C19) 

are bounded for U in r.;=. Equation (CI7) then 
implies28 that T["P; Ur] =? 0 uniformly on r.;=. Since 
the index 0' was arbitrary, the amplitude T["P; Ur] =? 0, 
uniformly on the set roC'lL) defined in (CIO) for all 
product wavefunctions "P in $(.N'o) , where .N'o == 
n.N' a is open in 'ill and contains K. 

To complete the prooflet.N" c @.M.,; be a neighbor-

hood of K, and let X' n 'ill be a subset of .N' 0' Let 
X be a product wavefunction in $(.N'o) with unit 
value on .N". Then, for any "P in $(.N" n 'ill), one has 

T["P] = T["PX]' (C20) 

If the notation T(t) == T[X; l:t;.U;.] is introduced, the 
amplitude T["P] can be written in the form of the 
convolution29 

where 

T["P] = J dtVi( -t)T(t), (C2l) 

Vi(t) = (27T)-(Sn-4) f dze-;(z.t)( "P 0 II K)(Z). (C22) 

The z;. in (C22) are the local coordinates U;. . K. Define 

6(nt; t) = {l, if t =.0 or t /t/-
1 == i E nt, 

0, otherwIse. 

Equation (C21) can then be rewritten 

where 

T["P] = J dtVi( -t)[1'O(t) + fl(t)], 

fO(t) = [1 - 6(Qt, t)]1'(t) 

18 H. Bremermann, Ref. 7, p. 85. 
.. See Lemma 2 of Appendix C. 

(C23) 

(C24) 

(C2S) 

and 
fl(t) = 6(Qt, t)1'(t). (C26) 

The results of the preceding paragraph show that 
1'0(t) =? 0 uniformly in t /t/-1 as /t/- 00. Therefore, 

. the function fO(t) has an infinitely differentiable 
Fourier transform ro(z), and30 

f dt1jJ( - t)1'°(t) = J dz( "P 0 Hg)(z)TO(z). (C27) 

Let J(z) be the Jacobian appropriate to the local 
coordinates (~e(K), II K' De(K». Define 

TJ(z) == J-l(Z)]'O(Z) 

and let roCK) == T}(lli(K». Then (C27) becomes 

f dtVi( -t)1'°(t) = f dK "P(K)TO(K), (C28) 

where TO(K) is infinitely differentiable on .N" n 'ill. 
The function Tl(t) is not necessarily of rapid de­

crease when It/- 00, but it has at most polynomial 
growth.31 Hence, the function exp [-(6, t)]1'l(t) is of 
rapid decrease when 6 belongs to 

C+ = {(j I (6, i) > 0 for alIi E Qt}, (C29) 

and it has a Fourier transform P(z) that is holomor­
phic for 1m z in C+.32 If T}(z) == J-1(z)P(z) is intro­
duced for z in 

E+ = {z I z E ~c(K), 1m z E C+}, (C30) 

the second term in (C24) becomes30 after simple 
manipulation 

J
dtVi( - t)1'I(t) = lim JdZ( "P 0 II g)(z)J(z)T~(z + i6). 

161 .... 0 

6EC+ (C31) 
From this it follows that 

f
dtVi( -t)T1(t) = lim fdK"P(K)T1(K'(K, 6», (C32) 

161 .... 0 
6EC+ 

where P(K) = T}(ll1(K» and 

K'(K, b) = II g(IIi(K) + ib). (C33) 

This completes the proof. 

Lemma 1: Suppose T["P] has the representation 

T["P] = r dZ[ d
m 

J"P(Z)]F(Z), (C34) Js dz? 

where S is some domain, and F(z) is a function that 
is continuous in ZI and has continuous partial deriv­
atives of all orders in the variables (Z2' .•• ,z .. ). Let 

aD H. Bremermann, Ref. 7, p. 159. 
81 Reference 7, p. 164. • 
s, R. F. Streater and A. S. Wightman, Ref. 7, p. 53. 
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h: S -1'0 S' be some nonsingular holomorphic mapping 
from S c Rn onto S' c Rn such that z~ == h/z) = ZI' 

Then there is a function G(z'), z' = h(z), which is 
continuous in z~ and has continuous partial derivatives 
of all orders in (z;, ... , z;n_4)' such that 

T[1p] = r dz'[ d
m 

Jlp(h-1(Z'»]G(Z')' (C35) 
js' dz~m 

Proof" Under the mapping h, the operator d"'ldz>;, 
transforms into a differential operator 

(C36) 

where the hllll , are holomorphic functions and the 
D~' are derivative monomials in the variables 
(z;" .. , z~n_4)' The quantity T[lp] then has the form 

T[lp] = r dz'H'(z')[DJlp(h-1(z'»]F(h-1(z'». (C37) 
js' 

The function F'(z') == F(h-1(z'» also has the property 
that it is continuous in the first variable z~ and Coo in 
the other variables (z~, •.. , z~n_4)' The function H' (z') 
is the holomorphic Jacobian for the transformation h. 
For each p and p' the derivatives D;' can be trans­
ferred (through partial integrations) to the functions 
H'h

llll
,F'. This transforms (C37) into the form 

applicable, yielding (C40) for all 11' E j} that satisfy 
(C20). 

B. Proof of Theorem lA 

The proof consists of two parts. The first is a 
demonstration that the number (1(, the simple co­
ordinate system of Theorem 1, the number Ii, and the 
set .N'. can be chosen so that [.N' n C:{K)) c Eo:' 
The second consists of the necessary generalization of 
the way the limit (3.7) is taken. 

Choose a simple coordinate system (Ae(K), IIg, 
De(K» in which ZI = O'(K; K) = VA(K)· K. Such a 
choice is, of course, possible only if VA{K) does not 
belong to eo{K). [See (BII).] But if VA(K) belonged 
to eo(K) the various displaced velocity cones V(1)i' 
-a,A(K» would have a common point and assump­
tion (c) of Theorem I could not be satisfied. Thus, 
coordinates with ZI = 0' can be chosen. 

Let .N''' c [Ae(K) n 'Wi] be a complex neighbor­
hood of K such that its closure J\nff is also contained in 
Ae(K) n 'We and the set 1I~I(X") is convex. Then for 
K E [.N''' n C:(K)] one has 

1m zl(K) ~ sup 1m (U . K) = Ii 111m KII. (C41) 
U€R. 

Since UgI(X") is convex, there is some A > 0 such 
that, for K E .N''', 

T[lp) = dz''2, G
II
(z') -;;, Jlp(h-1(z'». (C38) 111m KII ~ 11m zl A, (C42) L 

m dll 

S' p=1 dZ I where z = niCK). For since the mapping IIg is 
The functions Gp(z') also have the property that they holomorphic, the functions ~v{x, y) == 1m kJx + iy) 
are continuous in the first variable z~ and Coo in the have derivatives of all orders for (x + iy) in X" and 
others. Through further partial integrations the deriv- can therefore be expanded about y = 0 by using the 
atives dP/dzt can all be transformed into derivatives Taylor formula34

: 

dm/dz~m, yielding of, 
f"(x, y) = hv(x, 0) + ~ Y;. a iv (x, ty), (C43) 

T[lp] = r dZ'[ d
m 

Jlp(h-1(z'»] '2, G;(Z'). (C39) i. Yl 
js' dz~m ., where t, 0 ~ t ~ 1, is some number that depends in 

The function G = ~1I G~ is the function required by the general on y. Since kiV(z) is real when z is real, 
Lemma. J;Jx,O) = O. We can therefore write 

Lemma 2: Equation (C21) is valid: 

T[lp) = TIxtp] = f dtip( -1)T(t). (C40) 

Proof: Since X belongs to j}, the functional T[Xlp] = 
F[lp] is a continuous linear functional on the space 
S of functions 11' that possess continuous partial 
derivatives of all orders. (Note that the support of tp 

is not restricted here.) This is because xtp belongs to 
j} for every 11' in S. The functional F then belongs to 
S', and the result33 of Bremermann is directly 

IIImKIl = lyl A(x,y), (C44) 
where 

A(x, y) = Iyl-l {t I t Y;. :~). (x, ty) rt (C45) 

Consider now 

A = inf A(x, y). (C46) 
(Hi1l)EITR-1 (JY' ") 

11*0 

If A = 0, there must be a sequence of points (xn' Yn), 
with Yn ~ 0, such that 

(C47) 
n-+oo 

33 H. Bremermann, Ref. 7, p. 166. The lemma is Problem 6 on p. 
166. The proof is a straightforward application ofthe technique of 3. T. M. Apostol, Mathematical Analysis (Addison-Wesley Publ. 
Riemann sums found on p. 49. Co., Inc., Reading, Mass., 1957), p. 124. 



                                                                                                                                    

MACROSCOPIC CAUSALITY AND SCATTERING AMPLITUDES 847 

Moreover, because ,i'" is closed, the sequence (x"' y,,) 
approaches a limit (.Y, y) with (x + iy) E TI7l(ff"). If 
y ¥- 0, then 11 1m K(x + iy) II = O. But for a simple 
coordinate system the vanishing of the imaginary 
part of K(.x + iji) implies ji = O. This precludes the 
case ji ¥- 0. To discuss the case where y = 0, we first 
define w" = y" IYnl-1. The sequence W n, suitably 
restricted to a subsequence, is convergent to some 
w with unit norm. The continuity of the derivatives 
oi;v f oJ;. further implies that 

A = lim ~(x", Yn) = {I I I w" Ohv (x, 0) 12}l. (C48) 
n .... oo tV;' oy;. 

If A = 0, the equations 

I W). ofi\' (x, 0) = 0 
). OY;, 

(C49) 

must be satisfied for all i and v. Because the real 
analyticity of the kJz) implies 

ok;v (x) = Ohv (x, 0), (C50) 
OZ" OY;, 

the equations (C49) state that the vectors V;. = 
(vi).' ... , v,,).), with viA.v = okivloz)., are linearly 
dependent. These vectors V). form the rows of the 
Jacobian matrix of the mapping TI g(z). Since this 
Jacobian has maximal rank in DeCK), the rows cannot 
be linearly dependent. This contradiction implies that 
A cannot be zero. Consequently A is greater than zero. 

For any € > 0 one can find an 0 < IX < 1 such that 
IX < €A. Then (C41) and (C42) imply 

1m Zl > 11m zllX. 
This implies that z is in TIgl(t;«). Thus, 

[X" fl C:(K)] c t;", 

and the first part of the theorem is proved. 
It is clear that X" can be chosen so that 

[X" fl 'ill] c X' 

(CS1) 

where X' is the neighb.orhood of Theorem 1. Theorem 
1 therefore implies Theorem lA, provided the manner 
of taking the limit (3.7) can be converted to that of 
(3.14). Letz).(x, $),1 SA S 3n - 4, be any uniformly 
continuous functions of x E D(K) == De(K) fl R3n-4 

and s, 0 S S S 1, which have the following three 
properties: (a) partial derivatives (with respect to x) 
of all orders exist and are continuous in both x and s; 
(b) z(x, 0) = x for all x; and (c) z(x, s) belongs to 
TIgl(t;«) for all x and S > O. We want to show that 

T['P] = ~..?! f dKtp(K)[TO(K) + T1(K'(K,s»], (CS2) 

where roCK) and TI(K) are the functions of Theorem 
1 and 

K/(K, s) = TI]?(Z(TIil(K), s» (C53) 

Since [X" n C:(K)] c &«, all paths K'(K, s) of the 
type allowed by the theorem are of the type (CS3). 
Thus a proof of (CS2) proves also Theorem lA. 

The relevant term in (CS2) is the one involving 
TI(K'(K, s». In terms of local coordinates it can be 
written 

/(s) == J dK'Ip(K)T1(K/(K, <5» 

= J dxJ(x)'Ip(x)T}(z(x, s». (CS4) 

The function T}(z) was defined in the proof of 
Theorem 1 as J-l(Z)TI(Z), where TI(z) is defined for 
1m z E C+(IX) and Z E De(K) as 

Tl(Z) = (27Tt(3n-4) I dte+ilz.t)fl(t). (CSS) 

For s > 0 and x E D(K), the quantity 1m (z(x, s), t) 
is bounded from below by 1](s) It I > 0, for all (real) 
t¥-O in the support of fI(t). This lower bound is a 
consequence of the continuity of z(x, s) and the 
assumption that z(x, s) E TIil(t;«) for s > O. The 
integral (CSS) therefore converges uniformly in z and 
the integrations in (C54) can be interchanged3li : 

/(s) = J dtf\t)<fI( -t, s), (C56) 

where 

<fI(t, s) = (27T)-(3n-4J dxJ(x)rl(z(x, S»'Ip(x)e-ilz(X.sl,tJ. 

(C57a) 

The next step is to show that the integral (CS6) 
converges uniformly in s in some strip 0 S s S so, 
where 0 < So S 1. The function fI(t) is continuous 
and of at most polynomial growth, so there is some 
integer N such that fl(t)(1 + Itl2N)-I is absolutely 
summable. On the other hand, the function 

(1 + ItI 2N)<fI( -t, s) 

is bounded in both t and s for t in the support of 
fl(t) and s in some strip 0 S s S so. To see this, 
consider the functions Zl(X, s) as a mapping ~ from 
D(K) into De(K) for each s. Let W(x, s) be the 
Jacobian of ,. Assumption (a) about z(x, s) implies 
that W(x, s) is continuous in both x and s and assump­
tion (b) implies that W(x,O) = 1 for all x. It follows 
that there exists So, 0 < So S 1, such that W(x, s) 
does not vanish on any product set of the form 

s. Reference 35, p. 445. 
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P X I, where 1 = {s I 0 ~ s ~ so} and P is any com­
pact subset of D(R). For any s E J, therefore, the 
mapping , can be inverted on P. Since supp 1p 'is a 
compact subset of D(R), this result can be applied to 
(C57), yielding 

<I)(t, s) = (21T)-C3n-4) 

X r dzJ(x(z»J-1(z)W-1(z)1p(x(z»e-;cz.ll. 
Jr(s) 

(C57b) 

The contours r(s) in (C57b) are the images under, 
of D(R) n supp 1p for various values of s. The sets 
res) are compact for all s E I. Consider now the 
function (l + It I 2N)<I> ( -t, s): 

(1 + 1112.11')<I>( -t, s) 

= (21Tr(3n-4) r dzJ(X(Z»)J-l(Z)W-l(Z)1p(X(z» 
Jns) 

X [1 + (-l)N(t ~2~r}iCZ.tl. (C58) 

Partial integrations of (C5S) yield 

(1 + ItI 2.'\)<1>( -t, s) = (21T)-(Sn-4) 

where 

X r dzW-1(z)F N(z)e iCz •tl, (C59) 
Jns) 

FN(Z) = W(Z>[l + (-l)N(t::~rJ 
X J(x(z»r1(z)W-\z)1p(x(z». (C60) 

Equation (C59) can be rewritten: 

(1 + ItI2N)<I>( -t, s) = (21Tr3n- 4f dxFN(z(x, s»)ei(z.tl. 

(C61) 

The continuity of the mapping' in both x and s, and 
the continuity of the functions J, W, and 1p ensure the 
boundedness of FN(z(x, s» on D(R) X I. The bound­
edness of ei(z.l) for all t in the support of fl(t) is en­
sured by the fact that z is either real (5 = 0) or in 
IT:tl(e~). Thus, the function (l + ItI 2N )<I>(-t, s) is 
bounded in both t and s, with t in the support of 
fl(t) and 0 S s ~ So, and the integral (C56) con­
verges uniformly.36 

The order of the limit s _ 0 and the integration over 
1 can therefore be interchanged: 

lim I(s) =fdtT1(t)<I>( - t, 0). (C62) 
s .... o 

Because <1>( -t, 0) is just ip( -1), equation (C62) is 

!~~J(s) = J dtT\t)ip( -1). (C63) 

38 Reference 35, p. 438. 

Since it was shown in the proof of Theorem I that 

lim JdK1p(K)T1[K'(K, b)] =fdtfl(1)ipC-t), 
IJI .... O 

JeC+(a) (C64) 

the proof is complete. 

APPENDIX D 

A. Proof of Theorem 3 

Consider an arbitrary point R of 'ill - 1:+, and let 
cu, = {U1, ... , U3n- 4} be a set oflinearly independent 
displacements that define a simple coordinate system 
(fle(K), II K., DeCK» at K. Because 'ill - 1:+ is open,19 
there exists a (product) neighborhood .N'~ c ®.At,i' 
(.N>~ n .At,) c (fle(K) n ['ill - £'+]), of K such that 
X~ is the support of some product wavefunction X'. 
Because 'lL defines a set of local coordinates at K, the 
set .N'~ can be chosen small enough so that the set 
r('llo) defined in (4.9) has an empty intersection with 
Co(X'). [See Eq. (B10).] 

Consider next a product X satisfying supp X == 
.N>1 C l') c .N>~, where l') is open. Then 

(01) 

To prove (01) assume the converse: Suppose there is a 
U in Cc(X) that is not in Co(X'). Because the points of 
.N>' n .At, lie in 'ill - £.+ and hence in.At, - .At,o, we can 
assume that no two initial k i are collinear in X' and no 
two final k i are collinear in ,N>'. Then, because U is not 
in Co(X'), one can find some E > 0 such that the sets 
V,(Xi' ui) of Def. 4 have no common point. But then 
the diagram j). required by Def. 4, and by the fact that 
U is in Cc(X), must be a nontrivial diagram. This dia­
gram ~< belongs to Ce(K) - CoCK) for some K in 
X' n .At,. But then this K lies on £.+, contrary to the 
definition of ,N>'. This contradiction proves(DI). 

Because r('11) does not intersect Co(X), it does not 
intersect Ce(X), and is therefore a (compact) subset 
of Ae(X). 

Since r(cu,) is a compact subset of Ae(X) , the SAC 
condition implies that feet) = T"fx; 2 1 A UA] => 0 uni­
formly in 1 Itl-1 as Itl- 00. 

Let the product wavefunction X have unit value on 
the closure .N' 2 of some neighborhood .N' 2 C 'ill of K, 
where .N> 2 is a subset of .N'1 n 'ill. If 1p belongs to 
$(.N'2)' then Tc[1p] = T"f"Px], This relation can be 
rewritten29 

Tc[1p] = J dtip( -t)f~(t), (02) 

where 
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is defined just as in Appendix C. Since Te(t) is of rapid 
decrease uniformly in t Itl-l when It I becomes infinite, 
it has an infinitely differentiable Fourier transform 
T.,(Z).37 Moreover, the convolution theorem3o can be 
used to convert (02) to 

Te[ 1p] = f dz( 1p 0 7Tg)(z)Tc(z). (04) 

Let J(z) be the weight function (Jacobian) appropriate 
to the mapping llR' and let TeAz) = J-l(z)Te(z). 
Finally, let Te(K) = TeAngI(K». This function is 
infinitely differentiable on X 2 , and 

Te[1p] = f dK1p(K)Te(K) (05) 

for every wavefunction in .'B(X2)' The distribution 
Te(K) is therefore infinitely differentiable on X 2 and 
hence at K. 

B. Proof of Theorem 4 

Let X c ['UJ n 6.e(K)] be a neighborhood that 
satisfies the conditions of Oef. 5. Then, any neighbor­
hood Xl of K fulfills the conditions of the theorem if 
its closure .R't is contained in X. 

To prove this, let X be a product wavefunction in 
.'B(X) with unit value on i\, and let Te[X; U(t)] == 
Tit) for any displacement U of the form U(t) = 
! t). U).. Being the Fourier transform of a distribution 
with compact support, Te(t) is infinitely differentiable.3l 

If 1p is any wavefunction in .'B(X l ), the transition am­
plitude Te[1p] can be written29 

Te[X1p] = Te[1p] = f dtljJ( -t)Tc(t), (06) 

where ip is defined in (03). The domain of integration 
is broken up in the following way. Let 

for all t. Equation (06) then becomes 

T[1p] =Jof dtip(-t)T\t), 

where subscripts c are now dropped and 

(011) 

(012) 

Consider first the term T°(t). Because the set ;')0 
corresponds to a closed subset of r('1.1) - rc('1.1; X), 
the SAC condition implies that, as It I increases, the 
function fo(t) is of rapid decrease, fo(t) => 0, uni­
formly in t Itl-l for t in C(wo)' Since TO(t) vanishes for 
t i ('(wo), the restriction that t belong to C(wo) can be 
removed: fo(l) => 0 as Itl- 00. This means that 
fo(l) has an infinitely differentiable Fourier transform 
ro(z) , and the first term in (011) can be written30 

f dtip( -t)TO(t) = f dz(1p 0 7TR)(z)TO(z). (013) 

Let J(z) be the weight function appropriate to the 
mapping II g, and let T~(z) = J-l(Z)ro(Z). The def­
inition roCK) = T}(ll:gl(K» allows (013) to be written 
in the desired form 

f dtip( -t)TO(t) = f dK1p(K)TO(K), (014) 

where roCK) is infinitely differentiable on Xl' 
The functions Ti(t), i ~ 1, which vanish for 

t i C(w i ), are of at most polynomial growth as It I 
becomes infinite. Any exponential damps this poly­
nomial growth, and hence the functions 

exp {-(~, t)}Ti(t) 

are of exponential decrease as Itl- 00 uniformly in 
t Itl-l for any ~ E C+(Wi)' The function 

exp {-(~, t)}Ti(t) 

W o = Q - U Wi' 
i21 

and for all i ~ 0 let 
(07) has a Fourier transform Ti(X + i~) that is holomor­

phic for ~ E C+(Wi).32 It is evident that 

C(wi ) = {t It¥:- 0, t Itl-lEwi }. 

Define the step functions 

(08) fdtip( -t)Ti(t) = lim fdtip( -t)e-(~·t)Ti(t). (015) 
I~I-+O 

~EC+«i)i) 

The convolution theorem3o can be used to write (DIS) 

{
I if t E C(w i ), 

O;(t) = 0: if t i C(w;), (09) as 

and adjust the (finite) values on the boundaries of the 
C(w i ) so that 

(010) 

37 E. C. Titchmarsh, Introduction to the Theory of FOllrier Integrals 
(Oxford University Press, London, 1937), p. 174. The case here is 
actually the (trivial) extension to several dimensions of the result of 
Titchmarsh. 

f
dtip( -t)Ti(t) = lim fdX(1p 0 7TK)(x)T i (x + ib). 

I~I-+O 

~EC+(a;i) (016) 

Define Tj.(z) = J-l(z)Ti(Z) for z in the set 

E; = {z I Z E DeCK), 1m Z E C+(w;)}, (017) 

and define Ti(K) = Tj.(llJl(K». Then, (016) takes 
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the form 

I
dtip( -t)'i\t) = lim IdK1p(K)T i(K'(K, Cl», 

Ibl-+O 
~EC+CC;;i) (018) 

where 
K'(K, Cl) = Iltl(II"K\K) + jCl). (019) 

The function Ti(K) is holomorphic on 8i = II 11(Ei ). 

Equations (014) and (018) combine to yield the 
desired representation (4.16). 

It remains to show that if K is any point in Jfl - Lt, 
then the limit function (4.19) exists and is infinitely 
differentiable at K. By virtue of (DI8) the function 
Ti(K) exists as a distribution. It is only necessary to 
show that it is infinitely differentiable. Let X 2 be a 
neighborhood of K with closure contained in Xl - Lt, 
and let 1p be a product wavefunction in $(X2). Then 
it follows from the results just derived that T[1p; U] 
has the formal representation 

T[1p; Vet)] := f(1p, t) = I dZJ(Z)1p(z)e-iCZ
•
t){t T~(Z)} 

(D20a) 

= f dt'ip(t - t') 2 fi(t'), (D20b) 

where V(t) = 2 t;. V;., and the various T;(z) are 
distributions. Because X 2 contains no points of 
Lt the displacements in r~('l.1; Xl) belong to A'cC1p). 
The image of r!('l.1; Xl) in n is in Wi' Since the sets 
Wi (j > 0) are disjoint, there is a neighborhood w; of 
Wi with closure w; that does not intersect any of the 
sets Wi withj ¢ 0, i. The set w; is therefore the image 
in n of a set r~i('l.1; Xl) c r('l.1) that is a subset of 
A'cC1p). The SAC condition then requires that f(1p, iT) 
be of rapid decrease, T(1p, iT) => 0, as T - 00, uni­
formly in i = t Itl-l for i in w;. This requirement is 
also satisfied by the first (j = 0) contribution to (D20) 
since ro(z) is infinitely differentiable. [See (D13).] For 
j ¢ 0, i the set OJ; is a subset of n - Wi' According to 
Lemma 3, proved below, the contributionsj ¢ 0, ito 
(D20) must, therefore, also be of rapid decrease uni­
formly on OJ;. Therefore, the ith term of (D20) is also 
of rapid decrease uniformly on w;. But by virtue of 
Lemma 3 the ith term must be of rapid decrease uni­
formly also on the complement of w; . Thus for all t 
we have 

lim ItINfdZJ(Z)1p(Z)T~(Z)e-icz.tJ = 0 (021) 
1 tl-+oo 

for all integers N. This implies that TJ-(z) is infinitely 
differentiable in the interior of the support of 1p.37 
Since 1p can be chosen to be nonzero at Z, the function 

TJ-(z) must be infinitely differentiable at z. Thus Ti(K) 
is, by definition, infinitely differentiable at K. 

This completes the proof. 

Lemma 3: Let w be an open subset of 0, and let 
OJ' be a closed subset of 0 - OJ. Define 

G(t) = f_ dt'ip(t - t')T(X, t'), 
)Ucw) 

(022) 

where T(X, t) and ip(t) are defined in the proof of 
Theorem 4. Then, for every integer N, the limit 

(023) 

is obtained uniformly in i = t Itl-1 on (V'. 

Proof: The function T(X; t) is of at most poly­
nomial growth as Itl- 00.31 There is, therefore, an 
integer p for which (1 + IW)-lT(X; t) is bounded. Let 
A be that bound. Then 

I G(iT) I ~ A f dt'(1 + It'IP
) lip(iT - t')I, (D24) 

)ocO» 

The T dependence of the right-hand side of (D25) can 
be explicitly exhibited: 

I G(iT) I ~ ACqT3n-4-Q{Ao(i) + TPAp(i)}, (D26) 

where 

A/i) = f dt' It'l r If - t'I-q
, r = 0, p. (D27) 

)OCO» 

Since W' c 0 - W, the magnitude It - t'l is bounded 
from below by a positive number when t is restricted to 
w'. It follows that the integrals Ar(i) are bounded on 
W' if q is chosen large enough. In fact, if N is any 
positive integer, the number q can be chosen large 
enough that TN+! times the right-hand side of (D26) is 
(uniformly) bounded on OJ'. It follows that G(1T) 
satisfies (D23) uniformly on w'. 

APPENDIX E 

A. Proof of Theorem 5 

Let ~ be a fixed nontrivial connected causal space­
time diagram, and let K belong to (Ct[!D] - .A(,o). 
According to Theorem 6, the set Ct[!D] is locally the 
set of zeros (on 'ill) of a real analytic function A(K) 
that has nonzero gradient near K. This would imme­
diately imply that Lei [~] is an analytic submanifold of 
'ill of codimension 1 at K were it not for the possibility 
that the gradient of A with respect to local coordinates 
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might vanish, even though VA(K) does not. To rule 
out this possibility, let A(z) = A(K(z», where z is a 
set of local coordinates at K for 'ill. Then, 

(El) 

Now, any vector VA == oAjoK that causes (E1) to 
vanish for all A is of the form Uo(K). [See (B11).] But 
if VA were of this form, the displacements U which 
generate diagrams ~ E [<])], K = K(~), would also be 
of this form. Hence, because K is not in .At,o, the 
diagrams ~ E [~], K = K(~), would be trivial. This 
is contrary to hypothesis. Thus, oAfoz A is nonzero and 
the surface Cri [<])] is an analytic submanifold of '\1) of 
codimension 1 at K. 

B. Proof of Theorem 6 

Let ~ be a fixed nontrivial connected causal space­
time diagram with n external lines and m vertices, and 
let ~ E en]. Let 

Qr[K(~)] = L IEiTI kl~) (E2) 
i 

be the sum of the mathematical energy-momentum 
vectors k; of the external lines attached to vertex r 
of~ E [i>]. Energy-momentum conservation at vertex 
r then gives 

(E3) 
where 

The primed sum extends only over internal lines. The 
vectors ~;( V) are defined by 

(£5) 

and the quantity 

II~lV)11 = [~;(V) . ~i(V)]! (£6) 

is a Lorentz length. [The l\~i[v(~)]1\ are all strictly 
positive for ~ E [<])], by definition.] The fli and Eir are 
the masses and structure constants of 1). Equation 
(£3) is obtained by first expressing Qr [K(~)] in terms 
of the momentum-energies associated with the internal 
lines incident upon vertex r, and then using the 
identity II ~i II == II ociPi II = ocifl; to eliminate OCi' 

In terms of the quantities just defined, the positive-oc 
Landau surface c+[i>] is the intersection of the mass 
shell .At, with the set 

where the argument j) in Fr[V; ~] = Fr(V) emph~­
sizes the dependence of the Ejr andflj in Fr(V) upon ~), 
and 

Q+ == {V I ~i(V) are positive timelike}. (ES) 

If j7 E n+ and K E C+[j)] satisfy Qr(K) = Fr(V), 
then the set 

Q+(K) = {V I V E n+, Qr(K) = Fr(V)}, (E9) 

consists precisely of those points V which satisfy 

~;(V) = Aj~;(j7), all internallinesj, (E10) 

where the Aj are strictly positive scalars. For if V 
satisfies (E10), it clearly belongs to Q+(K). [See 
(E4).] Conversely, if V belongs to Q+(K), the vectors 

Dr(V) = Fr(V) - Fr(fJ) (Ell) 

must vanish. This gives 

L Vr ' DreV) 
r 

= L' flj{\l~lV)11 - II~i(i7)II-l ~lV) . ~;(V)} = O. 
j (£1~ 

Each term in the braces is nonpositive, hence each 
must vanish. This implies (E1O). 

Condition (E10) is essentially the condition that V 
belong to the null space of the Jacobian matrix H(V) 
defined by 

- oFr!,-
Hr!'.sv( V) = -;--;- (V) (E13a) 

vVs 

= L' EjrEjsflj l\~lfJ)I\-3 
kj 

x {11~j(flW gllv - ~jifJ)~jv(V)}, 

(E13b) 

The null space of H(V) consists of all m-tuples W = 
(WI' ... , W m) of four-vectors for which the equations 

L w~Hrl"sV< V) = 0 (£14) 

are satisfied for all sand v. It is evident from (E13b) 
that all vectors that satisfy (£10) belong to this null 
space. Hence, the set Q+(K) is contained in the null 
space of H(fJ). Conversely, any vector V in the 
null space of H(V) must satisfy (E10), without 
the restriction to positive Aj. For if (£14) is true, the 
equation 

L w~w;Hr".s.cfJ) 
rlt,~v 

= 0 = L' fl; 11~;(V)II-3 {11~i(VW' II~j(W)112 
j 

S[i>] = {K = (kl' ... ,kn) I Qr(K) 

= Fr[V; i>], V E Q+}, 

is also true. Since each term in the braces is nonposi­
tive, each must vanish. This implies (E1O) , without 

(E7) the restriction to positive Aj • 
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Explicit computation shows that any linear com­
bination of the vectors V and Ep (0 ~ p ~ 3), where 
Ep is a 4m-dimensional vector with components 

(Ep)~ = c5;, (EI6) 

belongs to the null space of Hev). Since f~AEp) = 0 
for all p and}, the vectors V E O+(K) and Ep must 
be linearly independent. The dimension N(V) of the 
null space of H(V) must therefore be at least five: 
Nev) ~ 5. 

On the other hand, Nev) cannot be greater than 5. 
For suppose it were. Then there would exist some 
W, linearly independent of the vectors V and Ep ' 

such that W, V, and the Ep ' and hence also any linear 
combination of them, belong to the null space of 
Hev). Consider the identity 

dj(W + exV) == Aj(ex)dj(V) = (X, + V)djev), 

(EI7) 
where the Xj are defined by 

dj(W) = Xjdj(V). (EI8) 

The number ex can obviously be chosen so that 
Aj(ex) ~ 0 for all} and Aj(lX) = 0 for some). Let {IX;.} be 
a sequence ex;. -+ ex, with ex;. > IX, and introduce 

(EI9) 

The vectors W;. belong to O+(K) and they converge to 
a limit, W' = W + IX V, which is not zero since W is 
linearly independent of V. The set of four-vectors 
W' defines a diagram j)' which is a contraction of~. 
The diagram j)' cannot be a trivial diagram because the 
trivial diagrams are generated only by linear com­
binations of the Ep , and W' cannot be one of these 
because of the linear independence of the W, V, and 
Ep. The function F;(V) corresponding to the vertex s 
of j)' is simply the sum of the functions Fr( V) corre­
sponding to those vertices r of ~ that unite to form 
vertex s in the cOI)traction of ~ that gives j)'. The 
function Q;(K) corresponding to the vertex s of j)' is 
formed in the same way from the Qr(K) of~. Thus we 
obtain 

(E20) 

for each value of A. Since the F~ do not depend on 
those internal lines of~ that are contracted in forming 
j)', the limit can be taken: Q~(K) = F~(W'). But then 
K belongs to f.:+[j)']. This contradicts the assumption 
of the theorem. Thus the quantity N( V) cannot be 
greater than 5. But then Nev) is exactly 5, and the 
matrix H( V) has rank 

Rev) == 4m - N(V) = 4m - 5 == R. (E2I) 

The knowledge that N(V) = 5 is itself useful. It 
says that all vectors W in the null space of H(V) are 
of the form 

(E22) 

Thus all V E O+(K) are of this form. Variations of the 
scalars ap simply translate the entire diagram, and 
variations of A merely change the scaling of the 
diagram. Thus (E22) tells us that there is essentially 
only one diagram j) from the set en] that satisfies 
K(j) = K. 

The vectors Qr satisfy the four conditions 2r Q: = 0, 
o ~ fl ~ 3. Thus we may consider the reduced space 
in which one of the four-vectors Qr is eliminated. 
Similarly one of the four-vectors Vr is eliminated by 
requiring 2r v; = O. Since the eliminated rows and 
columns are linear combinations of the remaining 
ones, the reduced 4(m - I)-dimensional matrix H 
still has rank R = 4m - 5. 

Following the procedure of Goursat38 one can now 
construct a function <I>(Q) of the remaining (m - 1) 
Q's which is real analytic at Q = Q == Q(K), which 
has a nonvanishing gradient V<I>(Q) at Q = Q, and 
which vanishes on the set 

:R(O') = {Q = (Ql, ... , Qm) I Qr = Fr(V), V EO'}, 

(E23) 

for some neighborhood 0' c 0+ of V. The construc­
tion of <I>(Q) goes as follows. Since the rank of the 
reduced H, which we will call fl, is just one less than 
the maximum possible rank 4(m - 1), one may, by 
virtue of the implicit function theorem, arrange the 
Q: and the v~ so that the first R = 4m - 5 of the 
v: (called x/s) can be expressed as real analytic 
functions x'; (XI , "', XR , t) = xi(X, t) of the first 
R of the Q/s (called X/s) and the final v: (called t). 
These expressions xi(X, t) for the v:'s are then inserted 
into the expression for the final Q: (called T). This 
gives 

T = t(x1(X, t), ... ,XR(X, t), t) = T[X, tJ. (E24) 

Differentiation of (E24) gives 

aT ~ at aXi + at at = i=1 aX
i 
at at . (E25) 

Similarly, one has 

Xi(X1(X, t),' .. ,XR(X, t), t) = Xj[X, t] == Xi' 

(E26) 

38 E. Goursat, A Course in Mathematical Analysis (Ginn and Co., 
Boston, Mass., 1904), Vol. I, p. 56. The arguments are a slight ex­
tension of those of Goursat. 
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which upon differentiation gives 

a X\ = 0 = i oXi OXi + oXi , 

at i~l aXi at at 1 ~ j ~ R. (E27) 

Equations (E25) and (E27) can be combined and 
simplified by writing T = Xo and t = Xo and by 
recognizing that the matrix a Xi! OX; is just Hii : 

aXi = ~ H .. aXi 0 < . < R. 
::l .c.. H::l' _J_ 
ut i~O ut 

(E28) 

Multiplication by the matrix C of cofactors of H 
yields 

2 c· oXi = (det fj) aXi 
• (E29) 

i 'J at at 
This equation, when combined with (E27) and the 
fact that det fj = 0, yields 

'Or 
Coo - = o. at (E30) 

But Coo is the cofactor (minor) of fj that was chosen 
to be nonzero. There is, therefore, a full neighborhood 
of the image (X, i) of V in which 

aT = o. 
at 

This implies that T is independent of t: 

T = T[X]. 

(E31) 

(E32) 

Since the Xi and T are just the Q~ , Eq. (£32) can be 
rewritten 

T - T[X] == <I>(Q) = O. (E33) 

This defines the real analytic function <I>(Q). It is 
evident from (E33) that V<I>(Q) is nonzero at Q. The 
neighborhood Q' of V is chosen small enough that 
Coo is nonzero and T[X] is single-valued and holo­
morphic on the image :R(Q') of Q'. 

We now show that there exists a 4m-dimensional 
neighborhood X(Q) of Q such that 

:R(Q+) n X(Q) 

= {Q I Q E X(Q), <I>(Q) = O} n E, (£34) 
where 

t = {Q I Q = (Ql' ...• Qm). 2 Qj = O}. (E35) 

The fact that :R(Q+) is confined to E follows imme­
diately from (E3) and (E4) by explicit computation. 
The nontrivial content of (E34) is that, subject to this 
restriction, the zeros of <I> exactly coincide with :R(Q+) 
in some neighborhood of Q. 

The construction of the function <I> ensures that it 

vanishes on :R(Q'): 

:R(Q') c {Q I <I>(Q) = O} n E. (E36) 

To show (E34) we first show that a neighborhood 
X' (Q) of Q can be chosen so that 

:R.(Q+) n X'(Q) C :R(Q'). (E37) 

Suppose this were not true. Then one could find a 
sequence of points Q(A) -+- Q such that, for each value 
of A, Q(A) is in :R(Q+) but not in :R(Q'). Each of these 
points Q(A) is generated by a corresponding point 
yeA) E Q+, which can be required to satisfy 2 viA) = 

o and 2' II~i(V(A»11 = 1. [The value of the mapping 
F of (E4) is insensitive to such restrictions.] The points 
yeA) are then confined to a bounded region of V space. 
For if this were not true, the Euclidean norms of 
the difference vectors Lli(V(A» would have to be un­
bounded for some j. This cannot be reconciled with 
the required boundedness of both their Lorentz norms 
and the energy components of all the Q(A). 

Since the yeA) are confined to a bounded region, 
the infinite sequence of yeA) must have a subsequence 
that has a limiting point V( (0). If this limit point were 
in Q+, then the continuity of F( V) would ensure that 
the image (under F) of V( (0) would be Q. This would 
require that V( 00) have the form (E22). The normal­
ization and translation conditions would then ensure 
that V( 00) == V. This is not possible since the V(A) 
must all lie outside the neighborhood Q' of V. Thus 
V( (0) cannot be an element of Q+. 

The only other possibility is that some of the 
IILlj(V( 00»11 are zero. The corresponding vectors 
Llj(V(oo» must then also be zero. For if 

IILli(V(A»1I -+- 0 

but Llj(V(A» -t-+ 0, then the energy parts of some of the 
Qr are forced to become infinite, which contradicts the 
requirement Qr(A) -+- Qr. Thus certain of the vectors 
Lli ( V( (0» must be zero. Not all can be zero because of 
the condition I' IILlj(V().))II = I. Thus, after appro­
priate scaling and over-all translation and specification 
of the individual external momenta incident on each 
vertex, the diagram corresponding to V( 00) is a 
contraction ~)' of 15. Equation (E20) again yields a 
violation of our original hypothesis that K E ct[15]. 
Thus none of the Llj (V( (0» can vanish. 

All alternatives having been ruled out, Eq. (E37) 
is established. It then follows from (E36) that there 
exists a 4m-dimensional neighborhood vl\f' (Q) of Q 
such that 

:R(Q+) n X'(Q) C (Q I Q E X'(Q), <I>(Q) = O} n E. 

(E38) 
This result is half of (E34). 
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To complete the proof of (E34) we construct a 4m­
dimensional neighborhood Jf"(Q) of Q such that 

{Q I Q E Jf"(Q), <I>(Q) = O} 

n f, c :R(O+) n .N'" (Q). (E39) 

Then (E34)is satisfied with .N'(Q) = .N"(Q) n Jf"(Q). 
To prove (E39), consider the equations 

Xi = xi(X, t), (E40) 

where the functions on the right are those appearing in 
(E24). Combining (E40) with the condition! Vr = 0, 
one obtains a system of equations 

v~ = v~(X, t) (£41) 

that gives all the v~ as functions of the Xj (I .::;; j .::;; R) 
and t, where t is just one of the v~'s. Let X be the 
projection of Q onto X-space, and let f be the value of 
t such that V == VeX, f) is the point of 0' that satisfies 
Q = F(V) and !' ~j(V) = 1. Because of the non­
singular nature of the mapping (E41) there are 
neighborhoods Jf x and Jf t of X and f such that the 
image [under (E41)] of Jf x ® .N't is contained in 0'. 
Moreover, (E26) and (E33) imply that if the projection 
X(Q) of Q onto X-space belongs to .N' x, if Q E f" and 
if <I>(Q) = 0, then Q = F[V(X(Q), t)] for any t E Jf t • 

Thus, every point of {<I>(Q) = O} and f, that satisfies 
X(Q) E Jf x is generated by some point V in 0'. 
Taking Jf" (Q) to be the set {Q I X(Q) E Jf x}, we have 
(E39). Thus (E34) is proved. 

The proof of Theorem 6 is completed by trans­
forming the preceding results from Q-space into K­
space. Thus one defines 

A(K) = <I>(Q(K» (E42) 

and lets Jf(K) be any K-space neighborhood of K with 
image [under (E2)] in Q-space contained in Jf(Q). 
Since 8[1)] is the K-space image of :R(O+) , (E34) 
becomes (5.3). [All points of C+ n oN' belong to .AL, 
and hence also to 'ill if Jf(K) = .N' is a small enough 
neighborhood of K E 'ill.] 

If K is a point of C+[1)] n .N'(K) then the point 
Q(K) lies in ~(O+) n Jf(Q). Hence, by virtue of 
(E37), Q(K) lies in :R(O'). Thus there is a V(K) in 0' 
such that F[V(K)] = Q(K). For all points in 0' we 
have Coo 7J6 0. Thus the rank, R[V(K)] of H(V(K» is 
4m - 5. The arguments that gave (E22) show also that 
any vector in the null space of H( V(K» is of the 
form 

p 

However, the gradient V<I>(Q) at Q = Q(K) belongs to 

the null space of H(V(K», as is seen from 

o<I>[F(V)] = ! o<I>(Frp) oFrP(V) 

av: rp oFrp OV: ' 

= "" o<I>(Qrl.) H (V) 
k oQ rp.BV rp rp 

= ! (V<I»~Hrp.8v(V) == 0. 
rp 

(E44a) 

(E44b) 

(E44c) 

Since V<I> is nonzero we may rewrite (E43) (using new 
A and aP) as v~(K) = i.V<I>[Q(K)]: + Lp aP(E): or, 
more briefly, as 

V(K) = AV<I> + ! aPEp, (E45) 

where the sign of <I> is chosen so that A is positive. 
The positions of the vertices vr(K) determine the 

positions of the lines of the corresponding diagram. 
In particular the position of the external line L; is 
generated by the displacement 

ui = A(V<I»r(,) + ! aP(Ep)rw , (£46) 

where r(i) labels the vertex to which Li is connected. 
The general displacement that generates this position 
of Li is obtained by adding an arbitrary translation of 
this line along itself: 

uf = A(V<I»~{i) + L aP(Ep)~{i) + tikf. (E47) 

The Ep is independent of r [See (EI6).] and can be 
considered a set of vectors over i, rather than r. Since 
Qi'(j) is a sum of terms containing ki' we can write 

o<I> = "" o<I> oQrv = ~ = ('["7ffi)P . 
k - V'V rCa)' 

okiP oQrv Okill oQrwp 
(E48) 

Substitution of (E48) into (E47) then gives 

ul! = A o<I>[Q(K)] + "" aPbP + t.kl! 
, ok. k P '" 

'II 

(E49) 

which is just (5.4). 

C. Proof of Theorem 8 

Let V = V(1l). It was shown below (EI4) that the 
null space of H(V) contains Q+(K), the closure of the 
set O+(K). The set Q+(K) contains the vectors V = 
V(j) for all diagrams j) that satisfy K·= K(j) and 
belong either to [1)] or to [j)'] for some j)' c ~. 
Hence, the null space of H(V) contains all points V 
that correspond to the diagrams j) of the theorem. 

Let the vectors Ep defined by (EI6) together with 
the vectors of the set {VI"'" V1>}, where p = 
N(V) - 4, be a basis for the null space of H(V). Thus, 
any vector W of this null space has a unique repre­
sentation 

" 3 
W = !A;J!t + !aPEp' (E50) 

;=1 p=o 
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Because of (E 10) , the vector W must satisfy the 
equations 

8;(W) = 1X;(W)8j(V) = (t Ai Xii )8i (V), (E51) 

where the Xii are defined by 

~;(Vi) = Xii~;(V)' (E52) 

Because 1) is connected, the condition ~j(W) = 0 for 
all j implies Ai = 0 for all i. This in turn implies the 
linear independence ofthe vectors Ri = (Xi!, X i2 , ••• ). 

These vectors Ri form a basis for the space of vectors 
<I = (lXI' 1X2,"') appearing in (E51). Through (E51) 
the vector <I( W) specifies W up to an over-all trans­
lation I aPEp ' 

In terms of <I vectors, the set Q+(K) has the follow­
ing description. For any Win Q+(K) the vector <I( W) 
is a linear combination, <I( W) = I A.i(W)Ri , of the 
Ri • The vector W is in Q+( K) if and only if the vectors 
:A(W) = (AI(W)," . ,Ap(W» and C j = (Xli" .. ,Xp) 
satisfy :A(W)' C; ~ 0 for allj. (The indexj labels the 
internal lines of 1>.) From this description it is clear 
that n+(K) is convex and starlike [W E n+(K) implies 
AWE Q+(K) for all A ~ 0]. 

Consider a nonzero vector <I( W) corresponding to a 
point W of Q+(K). If all other points W' of Q+(K) give 
an <I( W') proportional to cx( W) then p = 1 and the 
dimension of the null space of H( V) is five. In this case 
no contraction ~' c ~ can give point K(~') = K and 
Theorem 6 gives the desired result. Alternatively, if 
there is a <I(W') not proportional to <I(W), then let P 
be the plane through the origin that contains both 
<I( W) and <I( W'). The intersection of P with the image 
A+ in <I-space of n+(K) is two-dimensional, convex, 
and starlike. The boundaries of P n A+ are therefore 
two half-lines originating at the origin which, because 
A+ contains no vector <I with any negative components, 
must intersect in an angle less than "fr. Let <I(WI ) and 
<I(W2) be vectors in A+ that define these two boundary 
rays. In terms of these vectors, the original vector cx( W) 
has the representation 

<I( W) = YICX( WI) + h<l( W2), (E53) 

where YI and Y2 are strictly positive. 
Because <I( WI) and cx( W2) lie in the boundary of 

P n A+, the corresponding vectors :A(Wt ) and :A(W2) 

must be orthogonal to some of the vectors C i . The 
vector :A( WI) is orthogonal to C i , i E II, and the 
vector :A(W2) is orthogonal to C i , i E 12 , 

There are two alternatives for the vector cx( WI)' 
The first is that <I( WI) and its positive multiples are the 
only vectors in A+ for which the corresponding vectors 
:A are orthogonal to the vectors C;, i E II' The second 
~s that there is some second linearly independent 

vector <I(WD in A+ with :A(W{) orthogonal to the 
vectors C i , i Ell' 

In the first case the vector WI satisfies WI = V(~l)' 
where K = K(~l) and the diagram ~l cannot be 
further contracted at K. Thus, the point K belongs to 
I:t [~1], and WI must have the form (E45). Equation 
(E53) allows one to write 

W = AScI> + Y2W2 + I aPEp , (E54) 

where A.l is positive. 
In the second case the analysis just performed on 

<I( W) is applied to cx( WI)' The plane PI corresponding 
to P contains <I(WD and <I(Wl ). The intersection 
PI n A+ has boundary rays defined by <I(Wll) and 
<I( W12) such that the corresponding vectors :A( Wll) 

and :A( W12) are both orthogonal not only to the vectors 
C i , i E II' but to some additional C i as well. In terms 
of these new vectors a( Wll ) and a( W12), the vector 
cx( WI) can be written 

<I(W1) = YnCX(Wll ) + YI2CX(WI2), (E55) 

where Yll and Y12 are strictly positive. 
The entire analysis is then repeated with <I( Wll ), 

<I(WI2), and a(W2), etc. At each stage at least one new 
C i is added to the previous set of C;'s. Since the num­
ber of C;'s is finite, the procedure must terminate. At 
that stage all the vectors into which W is decomposed 
are associated with diagrams that have no further 
contractions. Thus we obtain 

W=IAgVcI>g+2,aPEp, (E56) 

where A.g ~ 0 and the sum runs over those diagrams 
~g c ~ or ~g = !i) that satisfy K = K(~g), but which 
have no contractions that do. 

The arguments following (E42) complete the proof. 

D. Proof of Theorem 13 

Because of Theorems 10 and 11, it is sufficient to 
show that the set (5.5) is convex, apart from vectors 
of the form UoCK). In particular, we wish to show that 
the simultaneous equations 

0= 2 AgvAy{K) + Uo( K), Ay ~ 0, (ES7a) 
and 

- 0 = 2, A~'VAg(K) + UMK), A~ ~ 0, (ES7b) 

imply that 0 = Uo(K) = - U~(K). Adding (ES7a) to 
(E57b) we obtain 

W = 2, (Ay + A~)VAiK), (E58) 

where W = - Uo(K) - U~(K). Define [see (E42)] 

V = L (Au + A~)V<PiQ). (E59) 
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This V gives the positions of all the vertices of a dia­
gram with external lines specified by W. Because all 
the j)g are contractions ofj), we have 

LllV) = 2 (A!I + A:')Lllv<l>y) 
y 

= 2 (Ay + A~)XyjLlj(V(~», (E60) 

Because the Ag , A~, Xu;, and Ll;( V('.D» are all non­
negative, so are the Ll;( V). But the positions of the 
external lines of V are given by W = - UoCK) -
U~(K). Therefore V must be a trivial diagram, since 
for K i .A(,o no nontrivial connected causal diagram 
can have its external lines coincident with those of a 
trivial diagram. But if V is trivial then (E60) implies 
that Ag + A~ is zero, for all g. Thus Ag and A~ vanish 
separately and U = Uo(K) = - U~(K). 

To complete the proof the cu, = (Ut , ••• , USn- 4) 

of Theorem 10 is chosen to contain a subset S of the 
set of vectors V Ag(K) such that S together with the 
n + 4 vectors of Uo(K) are a set oflinearly independent 
vectors that span a space that contains all of the 
vectors V Ag{K). The set of vectors of the form 
I' Au V Ag(K) with Ag ~ 0 and 2 Au ¥= 0, where !' 
is over S, is a convex set by the argument given above. 
Then Theorem 11 insures that re( U; K) is contained in 
a single set of the form (4.11), and Theorem 10 com­
pletes the proof. 

APPENDIX F 

A. Proof of Theorem 7 

The first step of the proof is to show that VAl (K) = 
J.V A 2(K) + Uo(K), where J. is real and Uo(K) is of the 
form (4.8). The more difficult second step is to show 
that the number A must be positive. 

Since Lt[~2] is a submanifold of codimension 1 in 
'UJ at K, there exists a local coordinate system 
(Lle(K), nil' De(K» at K such that Zl = A 2(K). [See 
(El).] The fact that Lt[~l] and Lt[~2] coincide in 
some neighborhood .N' of K means that in some 
neighborhood N c Ili(.N' (') Lle(K» of z = Ili(K), 
the function At(z) == At(K(z» vanishes whenever 
Zt = O. That is, in some ne~hborhood N' c N of z, 
the real analytic function At(z) has a power series 
expansion 

<Xl 

Ab) = I arn(z2," " Zan-4)Zr', (Ft) 
m=l 

where the am are real analytic functions. Explicit 
computation then shows that 

oAI ( _) • oA2 ( -) -Z=A-Z, 
OZj OZj 

(r2) 

where A is some real number. Since At(K) and A 2(K) 

are real analytic functions of K, we have 

oAg = (vA )oK (= 1 2). 
::I g::l ,g , 
UZj UZj 

(F3) 

[See (El).] Equations (F2) and (F3) combine to yield 

[VAleK) - J.VA2(K)]oK (Z) = 0 (F4) 
OZj 

for allj. Since the only vectors that are annihilated by 
the matrix oK/oz have the form (4.8) [see (Bll)], Eq. 
(F4)impliesthatvAt (K) = J.vA2(K) + Uo(K), where 
A is real and Uo(K) has the form (4.8). 

We first examine the case where A is strictly positive; 
the other case (J. < 0) will then be easy to rule out. 

For each value of g (g = I, 2), Eq. (E42) gives 

oAuCz) = I o<l>g(Q[K(z)]) oQrv oki/t (F5a) 
oZ;. rvill oQrv okill oZ;. 

= ! o<l>g okill , (F5b) 
ill oQill oZ.t 

where Qi is the vertex momentum Qr that depends on 
k i • According to (B 11) the left side of this equation 
determines o<l>9/OQill' apart from ve~tors of the form 
Uo[K(z)]. Then, in view of (E45), vAg determines the 
positions of the external vertices of the diagrams ~u 
apart from scalings, over-all translations, and trans­
lations of the position of the vertex Vi that is connected 
to Li along L;. The Li are here considered to be 
complete lines, not just line segments. 

It is useful to introduce diagrams ~t(z) and ~2(Z) 
that differ from the original diagrams ~1 and ~2 by 
scaling and choice of origin. The fact that ~t is a 
nontrivial connected causal diagram ensures that there 
is a pair of vertices, VI and VF, such that VI is connected 
to two initial lines, VF is connected to two final lines, 
and V F is in the positive light cone of V I' Let the 
position and scale of~l(z) be fixed by placing VI at the 
origin and requiring that IVI - vFI = 1. According to 
the results established above, the external lines whose 
intersection defines V I in ~t must also cross in ~2' and 
similarly for V F' Thus the position and scale of ~lz) 
can also be fixed by placing V I at the origin and 
normalizing so that IVI - vFI = 1. (Tn effect, J. is 
normalized to unity.) 

Diagrams constructed according to the rule just 
described are here called adjusted diagrams. The 
result (E45) is also applicable to them. In particular, 
Eq. (E45) implies that for a sufficiently small neighbor­
hood .N'(z) of z that does not intersect the Landau 
surfaces for any contractions of ~u' each point z of 
.N'(z) c {Ag(z) = O} corresponds to a unique adjusted 
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diagram ~g(z) E ['DuC.i)]. This is because all ambigu­
ities of translation and scaling have been removed. 

The vertex of'Dg(z) that is connected to the external 
line Li is called vgi(z), and the line parallel to k i passing 
through vgi(z) is called Lgi(z). 

The arguments given above show that for each i, 
Ll;{z) coincides with L 2i(z), but they do not show that 
Vli(Z) coincides with V2i(Z); these two points could be 
different points of Li(Z), The main part of the proof 
consists in showing that the vertices Vli(Z) and v2i(z) do 
in fact coincide if either is connected to two different 
initial lines (including L i ) or two different final lines 
(including Li)' 

Let Li be an initial-particle line. If both Vli and V2i 
are connected to the same additional initial external 
line L j (i ¥: j), then Vli(Z) and V2i(z) must coincide. 
For since K does not lie on ..A(,o, the two different 
initial lines intersect in at most one point. More 
generally, suppose that Vii is connected to the two 
initial lines Li and L j (i ¥:.j), and that V2i is connected 
to the two initial lines Li and Lk (i ¥: k,j ¥: k). Then 
again vli(z) and v2i(z) must coincide. For a small 
rotation of the two intersecting lines Li and L j about 
the axis ki(z) + kj(z) through vli(z) gives a nearby 
point z' of {Al(Z) = O}. This is because the sum k i + k j 

is not changed. The new point z' must belong also to 
{A 2(z) = O}. Thus there must be a point v2i(z') = 
V2k(Z'). But then Li(z') must intersect the line Liz') = 
Lk(Z), This can be true for several z' near Z only if 
Lk(z) passes through the point Vli(Z). This implies that 
the point v2i (z) must coincide with Vli(Z), 

We now show that this result (Vli(Z) = V2i(Z» also 
holds provided only that the vertex Vii is contained in 
two initial lines Li and L j (i ¥: j). For every Z in some 
neighborhood of Z the line Li(Z) contains both v1i(z) 
and v2i(z). The point v1i(z) mayor may not be a vertex 
of ~2(Z), In either case one can construct a causal 
diagram ~3(Z) containing Vli(Z) as an external vertex 
and with external lines coinciding with those of ~2(Z), 
One simply regards the part of Li(Z) lying between 
vli(z) and v2i(z) as an internal line of ~3(Z), and 
similarly for all lines Lk that in diagram ~l are con­
nected to Vli . All the conditions for a causal diagram 
are satisfied by these diagrams ~3(Z) E [~3(Z)], Since 
the external lines Li(z) of ~3(Z) are the same as those 
of~2(z), we see that in some neighborhood N of z the 
surface L+[~3(Z)] contains the surface {z I A2(z) = O}. 

We now show that Kbelongs to [t[~3(Z)], Suppose 
that this is not true, and that K belongs to L+[~~(z)], 
where ~~(z) c ~3(Z), According to the arguments of 
Appendix E [see (ElO)] the internal lines of~~(z) must 
be parallel to the corresponding internal lines of~3(z), 
But then there would be a diagram ~~(z) contained in 

~~(Z) that would have the same external lines as 
~2(Z), This diagram ~~(z) would be either an element 
of [~2(Z)] that has the same external lines as 'D2 (z), or 
a contraction of such a diagram. The conditions of the 
theorem ensure that no contraction of ~2(Z) has the 

'same external lines as ~2(Z). And (E45) shows that 
the only element of [~2(Z)] that has the same external 
lines as ~2(Z) is ~2(.i) itself. This would make ~;(.i) 
identical to ~2(Z), But then the contraction ~~(z) of 
~3(Z) would be identical to ~3(i'), which is not possible. 
It follows that K belongs to [t[~3(Z)], 

The surface [t[~a(z)] is a submanifold of 'UJ of 
codimension 1 in a neighborhood of K. In the space 
of local coordinates z, let [t [~3(Z)] be represented by 
{Aa(z) = O}. Since r.t [~3(Z)] contains r.t [~2(.i)] in 
some neighborhood of K, and since both are sub­
manifolds of'UJ of codimension 1, it follows from the 
arguments leading to (Fl) that the two surfaces are 
identical in some neighborhood of K. 

A rotation of the lines Li(Z) and Lj(z) which inter­
sect at vli(z) about the axis ki(z) + kj(z) takes one to 
a nearby point on {Al(Z) = O}, and hence on {Aa(z) = 
O}. The vertices of the unique corresponding diagram 
~3(Z) must be the same as those of ~3(Z), since the 
positions of the vertices depend only on the Q[K(z)], 
by virtue of (E45), and these remain unaltered. 
However, the vertex of~3(z) at V2i(Z) will not coincide 
with the vertex of~a(z) at V2i(Z) for arbitrary rotations 
unless v2i(z) = Vli(Z), This is the desired result. 

Since ~l and ~2 are interchangeable, the above 
result shows that vli(z) and V2i(Z) must coincide if 
either is connected to two different initial lines. 

Similar arguments hold for vertices connected to 
final lines. 

The preceding result is useful in the following way. 
For any v~(z) that is connected to two initial lines there 
is a v~ connected to two final lines that lies in the 
positive light cone of v~ or coincides with v~. Thus the 
original VI and V F can be chosen to satisfy the addi­
tional conditions that there is no v~ positive timelike 
relative to v F' and there is no v~ negative timelike 
relative to VI' Then the total external momentum QF 
at VF must be positive timelike, and QI at VI must be 
negative time like. This is because the internal lines 
connected to V F must all terminate at V F' and the 
internal lines connected to VI must all originate at VI' 

The above discussion refers to the case in which the 
signs of VAl and VA2 are the same. If these signs were 
opposite, the external lines and vertices of ~2(Z) 
would be obtained from those of ~l(.i) by reflection 
through the origin. But this clearly cannot give a 
causal diagram, for the vertex fj F (== -v F) of ~2(i') 
would have no vertices fj~ (== -v~) or ~2(Z) lying 
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negative timelike to it. No internal lines could ter­
minate on it and QF could not be positive timelike, 
contrary to fact. Thus the gradients VAl and V A2 
must have the same sign. 

B. Proof of Theorem 10 

The first step is to show that if the conditions of 
Definition 5 are met for any particular set 91 = 
{01 ' ••• ,Oan-4} that defines a simple coordinate 
system at K, they are met for all such sets. To see this 
consider an n-particle displacement U. According to 
(BlO), it has the unique representation 

3n-4 

U = ! t;.O;. + Uo(K), (F6) 
;'=1 

where Uo(K) is linearly independent of the vectors in 
the set 91. Provided ( = (t1' ••• , (311-4) is not zero, 
the projection of U onto f(91) is V = ! f;. 0;.., where 
f;. = ! 1;.111-1. Since (F6) is valid for any displace­
ment U, it is valid in particular for the members of 
any set'lL = {U1 , ••• , U3n- 4 } that define a simple 
coordinate system at K. For these Uy ' ·Eq. (F6) 
becomes 

where 

fcC'lL; K, tJ)= {U I (U + ME CcCK) () 1'('lL); 

L\ =! d;..U)., [! d~]t ~ tJ}. (Fll) 

Proof' To prove this we first express f.C'lL; .N') in a 
different way. Let V.W; u.) be the set obtained from 
VEe'l}i; u) by replacing ~upp 11\ by k~. Let C(K) be the 
set of connected causal diagrams i> that satisfy K = 
K(i» , ! vr(i» = 0, and !' IIL\j(V(i») II = 1. Define 

f;C'l.1; K, K', €) = {U' I u' =! t~U;.., 
vrw(i» E V.(k~; u; + a), i> E C(K)}, (FI2) 

where vr(i)(i» is the vertex of i> that is connected to 
the external line L i , and a is a real vector giving an 
over-all translation. Define 

fc('lL; K, K', €) = {U I U E f('lL), 

(3U = U' E f:C'lL; K, K', E), {3 > O}. (F13) 

Finally, define 

fc('lL; X, €) = {U I U E fc('lL; K, K', E), 

K and K' in X}. CFI4) 

(F7) Then for sufficiently small product .N' of K E .A(, - .A(,o 

we have 
Finally, since any displacement U has a unique 
representation of the type (F6)with the 0;. replaced by 
the Uy ' we have 

U = ! (3Py + U~(K) = ! (! (3yty).) 0). + Uo(K). 
y ;.. y 

(FS) 
That is, 

(F9) 

Because both 'lL and 91 define simple coordinate 
systems at K, the matrix M of coefficients t;.. is 

• y 
nonsmgular. Therefore, the vector t, which defines 
the projection of U onto f(cQ), also uniquely defines 
the projection of U onto f('lL). Thus, the sets 

f~(iL; .N') of Definition 5 are isomorphic to the 
corresponding sets f~«l.1; X) for any other choice of 
the set'lL. Moreover, if e is some vector in R3n-4, the 
~q. (F9) yields (t,.:) = ({3, MeL Hence, if the projec­
tIOn of U onto f('lL) is in r I-(,"tt, e), the projection of 
U onto 1'(%) is in f+('l.1, Me). This proves the 
statement that if the conditions of Definition 5 are met 
for any particular set it = {01 ' ••• ,Oan-4} that 
defines a simple coordinate system at K, they are met 
for all such sets. Next we prove the following lemma. 

Lemma 1: For any IJ > ° one can find a product 
neighborhood X of any K E .A(, - .A(,o such that 

fc('lL; X) C fc('lL; K, IJ), (FlO) 

fc('lL; X) c n rcC'LL; X, E). (FI5) 
£>0 

To prove (FI5), assume it is false. Then for some 
E > ° there is some U in r.('lL; X) that is not in 
fc('lL; X, i). Since this Uis in rc('lL; X) one can, for 
each € > 0, find a ::D. that satisfies the conditions of 
Definition 4, with this U and with supp"P = .N'. Thus 
a sequence of ::D. can be constructed for any sequence 
€i -+ 0. The norms N('n.) = !' IIL\j(V('n.,))II either 
approach zero or they do not. If they do not, then 
the normalized Ei == €;lN('n • .) must reach values less 
than E. But then fi('lL;.N', E) would contain U, 
contrary to assumption. Thus the norms N('n • .) must 
approach zero. This means the diagrams 'n •. approach 
trivial diagrams. But for sufficiently s~all oN' == 
suPP"P about K E .A(, - .A(,o the U E f('lL) cannot 
satisfy the conditions of Definition 4 with any trivial 
(or nearly trivial) 'n. for € smaller than some €1 > 0, 
because the various V.("Pi; ui ) can have no common 
point (or nearly common point) in these circum­
stances. This rules out the possibility that the norms 
N('n.) approach zero, and hence proves (FI5). 

B~cause of (F1S) it is sufficient for the completion 
of the proof of Lemma 1 to prove the following lemma. 

Lemma 2: For any tJ > ° one can find a product 
neighborhood X of any K E .A(, - .A(,o such that 

n rc('lL; X, €) c rc('lL; K, tJ). (FlO) 
.>0 
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Proof: To prove Lemma 2, assume it is false. Then 
there must be some b > 0 such for any product 
neighborhood.N' of K there is some U(.N') that belongs 
to rc(cu,;.N', f) for all f > 0, but does not belong to 
rc(cu,; K, b). Thus, for any sequence {f., .N'.}, s = 
1,2, ... , with fs -+ 0 and.N'. -+ K, there is a sequence 
of Us such that 

and 
(FI6a) 

(FI6b) 

Each Us satisfying (FI6a) corresponds to a U; = UIP 
that generates a diagram 1)., satisfying 

and 
1). E C(K.), 

where K. -+ K and K; -+ K. 

(F17a) 

(F17b) 

It has been shown elsewhere19 that the number of 
different positive-IX Landau surfaces that pass through 
any bounded region is finite. The infinite sequence 
1). must therefore be divided between a finite number 
of classes [1)], at least one of which must have an 
infinite number of the diagrams 1) •. Let this class be 
denoted by [1)1], and let the 1). not in [1)1] be disre­
garded. The sets V(1).) are confined to a bounded 
region and must have at least one accumulation 
point V = V(:t». The argument for this was given in 
Appendix. E below (E37). The arguments of Appendix 
E [see (E20)] also show that K = K(tl). 

If we can show that the sequence {Us} has an 
accumulation point a in Cc(K) n r('l1), we shall have 
established a contradiction with (FI6b), and shall 
therefore have proved Lemma 2. 

Each displacement Us corresponds to a unique 
displacement U; in r~(cu,; Ks, K;, fs). The points U; 
have a unique limit point A' defined by the condition 

O'E {U'I U' = L tIU", vrW E VO(ki ; u; + a)}. 
(FI8) 

The fact that the 0' defined by (FI8) is unique follows 
from (BIO), since the various U' that satisfy the second 
condition in (FI8) differ by vectors of the form Uo(K). 
The U; of (FI6a) satisfy, according to (F14) and 
(F12), the condition 

V~E {V' I V' = Lt~V", 
v;w == vr w(1),) E V.(k;; Ui + a), k' EoN".}. (F19) 

The continuity properties of the set on the right of 
(FI9) ensure that the U; approach the A' of (FI8). 

If the A' is nonzero, then the Us = U;/Ps must ap­
proach the limit 0= O'/P where P2 = L tHO') is 
nonzero. This a would lie in Cc(K) n r(U), thus 
contradicting (FI6b). Thus the proof will be com­
pleted by showing that A' is nonzero. 

To see that the vector A' is different from zero 
notice first that, because 15 is nontrivial, the earliest 
vertex VI must be definitely earlier than the latest 
vertex VB'. By virtue of the stability requirement, the 
initial vertex VI must be connected to at least two 
initial lines and the final vertex VB' must be connected 
to two final lines. Because K does not belong to .A(,o, 

the initial lines connected to VI meet only at VI and the 
final lines connected to VB' meet only at VB'. Such a 
configuration does not allow the A' of (FI8) to be 
zero, since A' = 0 means that all the external lines 
pass through a common point [see (BIO)]. This com­
pletes the proof of Lemma 2 and, by virtue of (FI5), 
the proof of Lemma 1. 

Given Lemma I and the result proved just before it, 
the proof of Theorem 10 is trivial. 

C. Proof of Theorem 11 

Let ec(K) be the set of U that generate 1) that satisfy 
K(1» = K. What must be shown is that for each 
K E .At, - .A(,o, we have 

Cc(K) = Cc(K). (F20) 

It is obvious that Cc(K) C Cc(K) and that CoCK) c 
Cc(K). What must be shown is that for each K E .A(, -

.At,o, we have 

Cc(K) - CoCK) c Cc(K). (F2I) 

To prove this, first define 

C~(K, f) = {V' I VrW (1» E V.(Ri ; u; + a), 1) E C(K)}, 

where C(K) is defined above (FI2), and define 

Cc(K, f) = {U I (3V = U' E C~(K, f), {3 > O}. (F22) 

Then, for K E .At, - .A(,o, we have 

Cc(K) - Cc(K) c n Cc(K, f). (F23) 
£>0 

The proof of (F23) is the same as the proof of (FI5), 
except for the obvious substitutions. It remains only 
to show that 

'>0 

The proof of this is similar to the proof of Lemma 2. 
If (F24) were not true, then there would be some 

U 1= CcCK) that belongs to each Cr(K, f) on the left. 
Thus for each f > 0 there would be a 1). E C(K) such 
that the conditions of Def. 4 can be satisfied with this 
U, and with sUpP"p replaced by K. A sequence 
fs -+ 0 gives then a corresponding sequence 1)s E C(K). 
As in Lemma I, the V(1)s) must accumulate at a V 
that corresponds to a ::D that satisfies K(n) = K. 
But then U would belong to Cc(K). This contradiction 
proves (F24), and hence also the theorem. 
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The Kirillov construction is applied to the semisimple Lie group 0(2, 1). All the unitary irreducible 
representations (except the supplementary series) are found, provided that complex subalgebras and 
complex points on orbits are admitted. The characters of the representations are calculated and the 
relation of their Fourier transforms to the orbits is examined. 

INTRODUCTION 

It was shown by Kirilloyl that a simple construction 
gives all the unitary continuous irreducible repre­
sentations of any nilpotent Lie group. This construc­
tion, which is described in Sec. I, correlates these 
representations with the orbits of the coadjoint 
representation of the group, specifying a certain 
one-dimensional representation of a particular sub­
group from which each irreducible representation is 
induced. 

It is of interest to know whether KiriIIov's construc­
tion gives all the irreducible unitary representations of 
other groups. Bernat2 has shown that it does for 
exponential solvable Lie groups. For other classes of 
groups, including semisimple Lie groups, it seems to 
give all the representations, provided that the method 
is extended by complexifying the groups suitably. Of 
course, one then begins to lose the neat geometrical 
interpretation given by Kirillov. 

The complexified KiriIIov construction was applied 
by Streater3 to the harmonic-oscillator group (a 
nonexponential solvable Lie group), yielding all the 
irreducible unitary representations. In this paper we 
apply it to the semisimple groups 0(3) and 0(2, 1), 
the latter being of interest because it is the 
smallest semisimple, noncompact Lie group. The 
problem of complexification has been studied by 
Kostant.4 

KiriIIov also showed that, for nilpotent groups, the 
characters of the irreducible representations are 
Fourier transforms of delta functions on the corre­
sponding orbits. We investigate the relationship for 
0(2, 1) in Sec. V in order to see how it is modified 
for semisimple groups. 

* The research reported in this document has been sponsored in 
part by the Air Force Office of Scientific Research OAR through the 
European Office Aerospace Research U.S. Air Force. 

1 A. A. Kirillov, Usp. Mat. Nauk. 106, 57 (1962) [Russ. Math. 
Surv. 17,53 (1962)]. 

• P. Bernat, Doctoral thesis, Ann. Sci. Ecole Normale Superieure, 
1965, Fasc 1, p. 37. 

3 R. F. Streater, Commun, Math. Phys. 4, 217 (1967). 
• B. Kostant (private communication). 

I. KlRILLOV THEORY 

Here we outline the Kirillov theory for any Lie 
group. 

Let G be the real Lie algebra of the Lie group G. 
Then G is an n-dimensional real vector space. We 
define the dual space G' as the space of real linear 
functionals over G; it is also an n-dimensional vector 
space. We write the functional as p. x, where x E G, 
pEG'. 

We consider the adjoint representation ofthe group 
G in the space G: 

g -- peg)· 

The co-adjoint representation p'(g) of G in G' is then 
defined by 

[p'(g)p] • [p(g)x] = p • x. 

Then, the orbit containing the point pEG' is the set 
of points {p'(g)p} , where g runs through the Lie 
group G. The orbits are disjoint subsets which fill G'. 

Given a point pEG', a Lie subalgebra HE G is 
said to be subordinate to p if 

p • [hI' h2] = 0 for all hI' h2 E H. 

Then (ip • h) and exp ip • h are one-dimensional repre­
sentations of Hand exp He G, respectively. H is 
said to be maximally subordinate to p if there is no 
other subalgebra of larger dimension subordinate to 
p. The Kirilloy construction takes one point p on each 
orbit, and for each such point takes the one-dimen­
sional representation U(exp h) = exp ip • h of exp H, 
where H is a subalgebra maximally subordinate to p. 
The corresponding representation of G is taken to be 
the representation induced by U(exp h). Thus each 
orbit yields one representation of G. 

We note here that the representation Tofa group G, 
induced by the representation U(g) of a subgroup H, 
is defined on functions (in general, vector functions) 
on the group G which satisfy 

F(hg) = U(h)F(g) for h E H, g E G. 

Then the induced representation is 

[T(g2)F1(g1) = F(glg2)' 

860 
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An induced representation can be put in the form of 
a multiplier representation on the space of functions 
on the coset space G I H: 

[T(g)j](z) = U[g(z)] . j(zg) , 

These parameters are related to the Euclidean coordi­
nates in the Lie algebra space by 

( 
(3* -ilX) 

exp (-tix . a) = -ilX* {3 , 

where g(z) E H. . i.e., 
Then, if dfl(z) is an invariant measure on GIH and 

U(h) is unitary, T is unitary with the inner product 

J FI(g)F2(g) dfl(Z), Z = Hg. 
G/H 

If G is a nilpotent Lie group, the above construction 
yields each inequivalent irreducible unitary represen­
tations once. Moreover, if PI and P2 are points on the 
same oJ,"bit and HI' H2 are corresponding maximally 
subordinate subalgebras, the corresponding induced 
representations are equivalent. Also, let C(eX

) be 
the character of the induced representation T (calcu­
lated, if necessary, as a distribution on the group). 
Then, f C( ~)eiP.X dx = (l [ 1p(p)] , 

where 1p(p) = 0 is the equation of the corresponding 
orbit, dx is the Euclidean measure on G' (invariant 
for nilpotent groups), and (l is the Dirac delta 
function. 

U. UNITARY IRREDUCIBLE REPRESENTATIONS 
OF 0(3) 

In this section we illustrate the Kirillov theory by 
applying it to 0(3), obtaining the usual (2j + 1)­
dimensional representations (j = integer). This will 
be helpful for comparison with 0(2, 1). 

The elements of 0(3) and of its covering group 
SU(2) can be written as g == exp (x • J), where the 
anti-Hermitian infinitesimal generators J == (JI , J2, J3) 
satisfy the relations 

[J2,J3]=JI , [J3,J1]=J2, [Jl,J2]=J3• (1) 

The group multiplication law is most easily written 
down by using the fundamental representation of 
SU(2), in which J = -lia and 

g == exp (x· J) = cos (lr) . I - i sin (tr)x . air. 
Here r2 = x2 + y2 + Z2, where 

0::;; r::;; n, for 0(3), g == -g, 

o ::;; r ::;; 2n, for SU(2). 

Thus we can write 

g == (IX, IX*, {3, (3*), IXIX* + {3{3* = 1, (2) 

with the group composition law 

glg2 = ({3: 1X2 + 1X1{32, {311X: + IX: {3: 

-IX: 1X2 + {31{32, -IXIIX: + {3: (3:). (3) 

IX = [(x - iy)lr] sin (lr), 

j3 = cos (tr) + i(zlr) sin (tr), 

IX* = [(x + iy)lr] sin (lr), 

(3* = cos (lr) - i(zlr) sin (lr). 

We shall need these formulas for complex values of 
x, y, z also. The asterisk is equivalent to complex 
conjugation for real x, y, z only, and in that case we 
write g == (oc, (3). For 0(3), we identify the elements 
(IX, oc*, {3, (3*) and (-IX, -IX*, -j3, -j3*). 

The adjoint and co-adjoint representations are 
realized as rotations of three-dimensional Euclidean 
spaces, and thus the orbits are spheres p~ + pi + p~ = 
const in the dual space. 

We first carry out the Kirillov construction on the 
real group 0(3) without complexifying. We take 
(0, 0, a), a ~ 0, as a representative point on the orbit 
p~ + p~ + pi = a2

• The only real subordinate sub­
algebras are one-dimensional; we choose the one 
generated by J3 • 

Thus we have to find the representation of 0(3) 
induced by the representation 

U(h) == U(e·Ja) = eia• 

of the subgroup 0(2). 
We note immediately that only orbits of integer 

radius will yield one-valued representations of 0(3) 
[half-integer for SU(2)]. 

To find the representation we put 

for 

Therefore, 

F(e-h'1X2' eh '(32) = eizap(1X2 , (32)· 
Take 

Then 
F(1X2' (32) = (1X:/loc21)2aF(l oc21, 1X2{32/1o(21) 

and, therefore, 

F(oc, (3) = (oc*flocl)2af( -(3IIX*), 

using (2). The action of the group [Ta(g2)F](g1) = 
F(glg2) reduces to 

[Ta(oc, (3)j](w) = C~: = :::Jaf ({3: ~ ~:w)' (4) 
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where f is a function on the complex plane, since 
w = -f3I/!1.~. 

Make the transformation 

j(w) = Uf(w) = (1 + IwI2)1(w), (5) 

f = UTU-I. (6) 
Then, 

(fal)(w) = (f3* - !1.*w)2aJ(w') (7) 
where 

w' = (!1. + f3w)/(f3* - !1.*w) 

The space of analytic functions of w is obviously an 
invariant subspace of T, but a priori there is no 
reason for J(w) to be analytic. Therefore, the induced 
representation is reducible. 

In order to obtain the irreducible representations by 
the Kirillov method, we must complexify the param­
eters x, y, z, and require either (i) that the repre­
sentation in the form Tbe analytic in these parameters 
or (ii) that we use functions analytic in x, y, z from 
the start. In the latter case,complex subalgebras are 
allowed. Method (ii) is more consistent and yields the 
same result as (i), as we now show. 

When x, y, z are complexified, !1., !1.*, f3, f3* are 
complex variables subject only to Eq. (2). There is in 
this case a two-dimensional (complex) subalgebra, 
e.g., {Ja, J1 + iJ2}, subordinate to (0,0, a). 

We seek functions F(!1., !1.*, f3, f3*), analytic in x, y, 
z, with !1.!1.* + f3f3* = 1, satisfying 

F(h1g2) = U(h l )F(g2) 
for 

hI = (!1.l' 0, f3l' f3il), g2 = (!1.2, !1.:, f32' f3:), 

and U(hl) = eia., where eli. = f31' Therefore, 

P(PI1!1.2 + !1.1P2' Pl!1.:, PIP2' -!1.1!1.: + PI
1
(2) 

= (f31)2a F( rJ.2 , rJ.:, f32' f3:). 

Take rJ.1 = f3:, f3I ! = !1.: . Therefore, 

F(rJ.2' rJ.:, f32' f3:) = (!1.:)2aP(1, 1, f32/rJ.:, 0) 

= (!1.:)21( -f32/!1.:), say. 

The action of the group reduces directly to 

(TJ)(w) = (f3* - rJ.*w)2aJ(w'). (7) 

f( w) is analytic in the complex plane, since F, !1. *, and 
-f3/!1.* are analytic functions of x,y, z. Since 

d2w' _I dw' 12 _ 1 _ (1 + Iw'j2)2 
d2w - dw - 1f3* - !1.*wI 4 - (1 + Iw12)2 ' 

the invariant measure on the complex plane is 

d2w 
(1 + Iwl2r for x, y, z real, 

d2w = du dv, where w = u + iv. 

Therefore, the unitary norm is 

Therefore, 

IIJI12 =f.f /j(wW d
2

w . 
(1 + IwI2)2U+2 

(8) 

The only analytic functions, for which this norm is 
finite, are polynomials of (at most) degree 2a. T is 
irreducible on these functions, since it transforms w" 
into (f3* - !1.*w)2a- n(!1. + f3w)n, 0 ~ n ~ 2a, which is 
a linear combination of all such functions wn• 

Thus, by using analytic functions of the complexified 
parameters and demanding unitary representations of 
the real group, we have obtained irreducible represen­
tations, which are, of course, the usual (2a + 1)­
dimensional ones Da (a = half-odd-integer gives the 
double-valued representations). 

The generators, eigenfunctions, and matrix elements 
can easily be written down from (7) and (8): 

J1 = -aw + HI + w2
) d/dw, 

J2 = -iaw - li(l - w2) d/dw, 

Ja = - ia + iwdJdw. 

Hence, J2 = -a(a + I). (N.B. These are the anti­
Hermitian generators, -i times the usual angular­
momentum generators.) 

The eigenfunctions of Ja are 

fa.m(w) = Na,mwa-m, -a ~ m S a, (9) 

where 

The corresponding eigenvalues are - im. 
In this basis, the matrix element of a general rotation 

(!1., f3) is 

Un' Tfm) = Na.n · Na,m 

X f.fw*a-n (f3* - !1.*w)a+m(!1. + f3w)U-md2w 
(1 + IwI2)2u+2 

N 
= ~ X coefficient of w"-n in 

Na•n 

(f3* - !1.*w)a+m(!1. + fJw)a-m. 

We may note that the action of the transformation 
on the complex plane is the same as the representation 
of rotations of a sphere by stereographic projection 
onto a touching plane. 
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The fixed points WI' Wz of 

W --+ Wi = (ex + (3w)/«(3* - ex*w) 

correspond to the projections of the poles of the axis 
of rotation. Using these to characterize a rotation, 
we can write down the (unnormalized) eigenfunc­
tions of a general rotation as 

(w - w1)a+",(w - wz)a-m, -a:5: m :5: a. 

We now consider the characters of the group and 
their Fourier transforms. It has been remarked by 
Kirillov that, unlike nilpotent groups, the Euclidean 
measure on the Lie algebra is not the invariant measure 
on the group for semisimple groups. In the case of 
0(3), the invariant group measure is 

dg = Ci~rlr) dx dy dz, rZ = X
Z + yZ + zZ. 

Therefore, in order to obtain a covariant function 
on the dual space, we must first multiply the character 
by 

before taking the Fourier transform with respect to the 
Euclidean measure. 

Now Ca(g) = sin (a + t)r/sin tr. Therefore we need 
to evaluate 

IIf sin (a + i)r sin ir -ip,xda '--'e x. 
sin ir ir 

This gives 

Cig) = 87TZ(J[p~ + pi + pi - (a + W]. (11) 

Therefore the (modified) Fourier transforms of the 
characters are delta functions on the orbits. However, 
we do not arrive back at the orbit we started from, 
but at one of radius increased by t. The latter orbit 
leads to Da+! [double-valued for 0(3), single-valued 
for SU(2)]. We shall find something similar for 0(2, 1). 

III. IRREDUCIBLE UNITARY REPRESENTATIONS 
OF 0(2,1) 

In this section we derive the unitary irreducible 
representations of 0(2, 1) by a modification of the 
Kirillov method, and we obtain the representations 
which were first derived by Bargmann.5•6 

The group elements can be written as 

g = ex•J = (ex, ex*, (3, (3*), (3(3* - exex* = 1, (12) 

S V. Bargmann. Ann. Math. 48, 568 (1947). 
• A. Barut and C. Fronsdal, Proc. Roy. Soc. (London)A287, 532 

(1965). 

where 

[J1,JZ] = -Ja, [Jz ,Ja] = J1, [Ja, J1] = J2, (13) 

ex = [(x - iy)/p] sin (tp), 

(3 = cos (ip) + i(z/p) sin (tp), 

oc* = [(x + iy)/p] sin (tp), 

(3* = cos (tp) - (iz/p) sin (tp), 

p2 = Z2 _ x2 - y2, P real or imaginary, 

(oc, ex*, (3, (3*) == (-ex, -ex*, -(3, -(3*), for 0(2, 1). 

(ex, (3) gives the spinor group, with fundamental (non­
unitary) representation 

(
f3* IX), 1f312 _ lexl2 = 1. 
ex* (3 

Hence, the multiplication law is 

exlZ = (3;exz + ex1(3z, (312 = ex;ex2 + (31(32, etc. (14) 

0(2, 1) can be obtained by analytic continuation from 
0(3), taking 

x --+ -ix, Y --+ -iy, z --+ z, 

ex --+ -iex, ex* --+ -ilX*, (3 --+ (3, (3* --+ f3*, 

J1 --+ iJl , J2 --+ iJ2 , Ja --+ J3 • 

The real group splits into the sectors 

o :5: p :5: 7T, denoted I, 

o :5: ip < 00, denoted II. 

For x, y, z real, the asterisk denotes complex con­
jugation. 

The adjoint and co-adjoint representations are 
transformations of a pseudo-Euclidean (2 + 1) space, 
and therefore the orbits are hyperboloids in the dual 
space: 

p~ + pi - pi = const. 

These are of two kinds: 

hyperboloids of one sheet, 

p~ + pi - p; = a2 ~ 0; 

hyperboloids of two sheets, 

pi + p~ - pi = - aZ :5: 0 

(each sheet of the latter is a distinct orbit). 

Consider first orbits of the second kind. We com­
plexify the algebra for the same reasons as for 0(3) 
in the last section and use functions analytic in x, y, 
z. The deduction of the representation runs parallel to 
that for 0(3). 

We induce from the representation U(hl) = eia• of 
the subgroup generated by {JI - iJz , Js}, a maximally 
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subordinate complex subalgebra to (0, 0, a) on the 
orbitp~ + p~ - p: = -a2

• 

The required functions satisfy 

F({J* {J * *{J* * {J {J (J*{J*) 1 1X2' 10(2 + 0(1 2, 0(1 0(2 + 1 2, 1 2 

= ({JSl.ap(a2, (J2), al = 0. 

Take {Jl = {Ji , 0(: = - ai; then, 

F(0(2, (J2) = ({J:)-2aF(a2/{J:, 0,1,1) 

= ({J:)-2aj(0(2/{J:), say. 

Note that 10(2/{Jil < 1 for real z, y, z. 
The action of the group reduces to 

(Taf)(w) = ({J* + a*w)-2'1(w'), 

w' = (a + (Jw)/({J* + O(*w), 

(15) 

(16) 

where f is analytic in Iwl < 1. This could have been 
obtained by analytic continuation from (7) for 0(3) 
(with a ---+- -a and w ---+- -iw, w* ---+- -iw* also). 

Unlike 0(3), (0, 0, -a) yields an inequivalent 
representation; it is not on the same orbit., 

For a < 0, make the transformation from (15): 

Then, 

g(w) = Uf(w) = (1 - IwI2)2'1*(W), 

T = UTU-l. 

(17) 

(18) 

(Tag)(w) = ({J* + a*w)2ag(w'). (19) 

This is of the form (15) for -a, but g is the conjugate 
of an analytic function. This conjugate representation 
is not equivalent to the original one. [For 0(3) we can 
prove equivalence by transforming w ---+- W*-l; here 
this is not possible, since we require that Iwl < 1.] 

Again, a is an integer for one-valuedness. We have 
derived the discrete series, and its conjugate series, of 
irreducible unitary representations of 0(2, 1). We need 
only consider the properties of one of these series, say 
a> 0. 

The unitary norm for T is 

111112 = f I Ij(w)1 2 (1 - IwI 2)2a-2d2w. (20) 

Iwl<l 

The function space, therefore, consists of all 
functions analytic in I wi < 1; these can be expressed 
as power series in w. Ta transforms wn into 

({J* + 0(*w)-2a-n(1X + (Jw)n, n ~ 0, 

and therefore the r,epresentation is irreducible. 
The infinitesimal generators are 

Jl = -aw + HI - w2) d/dw, 

J2 = -iaw - li(1 + w2) d/dw, 

Ja = ia + iw d/dw. 

Hence, 
Q = J: - J~ - J~ = a(1 - a). 

The eigenfunctions of Ja are 

(21) 

where 

(22) 

The corresponding eigenvalues are im. 
In this basis, the matrix element of a finite trans­

formation is 

Un' Tim) = Ka,mKa,n II w*n-a({J* + IX*W)-a-m 

Iwl<l 
X (IX + {Jw)m-a(1 - IwI2)2a-2d2w, (23) 

which may be written 

(fn, Tj'",.) = (Ka.m/ Ka.n) X coefficient of wn- a in the 

expansion of ({J* + IX*W)-a-m 

X (IX + (Jw)-a+m. (24) 

We note that all these properties of the discrete 
series of unitary irreducible representations of 0(2,1) 
can be derived by suitable analytic continuation from 
those of 0(3). 

Consider now the orbit (p~ + p~ - p:) = M2. We 
choose on it the point (M, 0, 0) and find a maximal 
subordinate subalgebra H = {Jl , J2 + Ja}. This is a 
real subalgebra and we do not have to complexify the 
parameters. 

Forgl EeH , 

+ {J * (J* ho 1X1 1=1X1 + 1 =e . 

Therefore, 
U(gl) = eiM(lJ = (IXI + {Jl)2iM. 

M is not restricted to integral values since the 
subgroup is noncompact. 

The required functions satisfy 

F( al{J2 + {J~ a2, (Jl{J2 + lXi (2) = (al + {Jl)2iM F( a2' (J2), 

0(1 + {Jl = ai + {Ji. 

Take 

where 

Then, 
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and 
F(rx2' fJ2) = Irx2 + fJ21 2,MF(0, _e-i8 ) 

= Irx2 + fJ212iMI(rx: + ~;), say. 
rx2 + 2 

The action of the group reduces to 

(T/)(eit/» == IfJ* + rx*eit/>1 2iM I ( ~ + fJei~ ). (25) 
fJ + rx*e't/> 

The function space consists of (well-behaved) func­
tions on the unit circle. 

There is no invariant measure on the unit circle, but 
we can find a unitary norm if we take M complex, 
with 1m (M) = 1. Then, 

11/112 = f I/(ei t/»1 2 dcp (26) 

is invariant. Another possibility is to take Re (M) = 0; 
then 

11/112 = fff(eit/>l)/(eit/>S) 'lei'Pt - eit/>21-2-2iM dCPl dCP2 

(27) 
is invariant. 

These two types of representations are the principal 
and supplementary series, respectively, both labeled 
by a continuous parameter. Some of their properties 
are given below. Although it is not possible to derive 
them by the Kirillov construction from real points on 
orbits, there is some correspondence between them and 
the orbits, at least for the principal series, as we show 
in the next section. 

The principal series of unitary irreducible repre­
sentations is realized on functions on the unit circle: 

(T.f)(eit/» = IfJ* + oc*eit/>I-1+2ij(eit/>'), 

M = s + i/2, (28) 
where 

11/112 = f 1/(eit/»12 dcp < 00. 

fee'''') can be expressed as a Fourier series: 

The functions 

(29) 

(26) 

1m = (27T)-teimt/>, - 00 < m < 00, (30) 

are eigenfunctions of Ja with eigenvalues im. The 
Casimir operator Q is equal to S2 + 1. 

All the inequivalent representations of the principal 
series are given by s 2 o. 

The supplementary series has a transformation law 
of the same form as (28): 

(Taf)(e't/» = IfJ* + rx*ei4>rl- 2al(e'4>'), 

M = i/2 + il1, (31) 
with the norm 

111112 = ff/(ei4>l)/(ei 4>2) leit/>l_ ei4>2 1-1+2a dCPl dCP2' 

(32) 

Again, f can be expressed as a Fourier series. We 
require 0 < 11 < ! in order that the norm be finite and 
positive. 

The eigenfunctions of Ja are 

1m = N a.meim4>, - CIJ < m < 00, 
where 

N;,2m = ff e-im(t/>1-4>2) le'4>l - ei4>2rlHa dCPl dCP2 

= 271 f e-im4> 11 - ei4>I-1+2 .. dcp 

= 21+2 ... 7Ti. r(I1)r(! - 11 + 1m\} 
r(ll1)r(l + 11 + 1m\} . 

The Casimir operator Q is equal to -a2 + 1. 

IV. CHARACTERS OF 0(2,1) 

In this section we find the characters of the irreduc­
ible unitary representations of 0(2, 1) and their 
modified Fourier transforms. 

The characters of a representation are class functions, 
i.e., they are the same for group elements belonging 
to the same conjugation class. The conjugation classes 
of 0(2, 1) are completely specified by the value of p 
and the sign of z, and, where necessary, we can choose 
the group elements as below: 

(i) conjugation classes of type I, 0 < P ~ 71: 

group element rx = 0, fJ = eti., 

z = €(z)· p, X = Y = 0; 

(ii) conjugation classes of type II, 0 < ip: 

group element rx = cosh llpl, fJ = sinh t Ipl, 

x = Ipl,y = z = O. 

There are two exceptional conjugation classes, namely 

(a) p = 0, x ¥- 0, 

(b) x = y = z = O. 

A. Discrete Series 

Take the eigenfunctions of Ja as a basis. Then the 
character is 

00 

Ca(p) = ~ Um, Tim)· • 
m=a 
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For type I, 

C!(p) = 2a + L~ (a + m - 1) 
17 m=a m-a 

x II w*m-aeiaZ(eiZw)m-a(1 - /w/2)2a-2d2w, 

Iwl<1 0( = 0. 

Using (21), (22), and (23), we obtain 

C!(p) = 2a :: 1 ff (1 _ ei
• /w/2)-2a 

Iwl<1 
X eiaz(1 _ /w/ 2)2a-2d2w. 

Therefore, 
. iCa-!). 

C!(p) = 2':in (tz)' with z = €(z) . p. (33) 

For type II, a more careful procedure is required to 
evaluate the character. Take 

y = z = 0, 1 = tanh (t /p/), c = cosh (t /p/). 

Now 

(fm, Tfm) 

= coeff of wm- a in c-2a(1 + tw)-a-m(t + w)-a+m 

= coeff of WO in c-2a(1 + tw)-a 

X (1 + tW-1)-a(1 + tw-
1)m, m ~ a, 

1 + tw 

from (24). We can expand this as a power series in w 
in the annulus 1 < /wl < (-I, since ° < ( < 1. If we 
replace w by w-1, we obtain 

(f m' Tf m) = coeff of WO in C-2a(1 + tw)-a 

X (1 + tw-1)-a (1 + tw-1)-m, 
1 + tw 

which we can also expand in this annulus. Therefore, 

C!I(p) = c_ ! _! _. -2a( <Xl a-I) 1 

2 -<Xl -a+l 2171 

X" dw (1 + tw)-a(l + tW-1)-a(1 + tw-
1
)m, 

j w 1 + tw 

where the contour of integration lies in the annulus 
1 < /w/ < 1-1. To evaluate the infinite sum, take the 
contour /wl = 1 and sum inside the integral: 

! (1 + tW-
1
)m = 217b(cp) 

-00 1 + tw 

= ~ [b(0))/(1 + t) + b(O> - 17)/(1 - t)], 
t 

where 

ilJ. 1 + tw-1 
it/J w=e, =e. 

1 + tw 

Then the integral yields for this part 

cosh (a - t) /pl 
2 sinh t Ipi 

(34) 

The finite sum becomes 

--'- dw . 
_c-2a 1 f (1 + tw-I )-2a+1 - (1 + tw)-2a+1 

2 21Ti w2 
- 1 

Take the contour in the annulus 1 < Iwl < (-I (i.e., 
outside w = ±1). 

The integral is the difference of two parts. The first 
is zero (change the variable to w-1-the contour is 
now inside ± 1). The second part yields 

sinh [(a - t) IplJ/2 sinh (t Ipl). (35) 

Therefore, for elements. belonging to conjugation 
classes of type II, 

C!I(p) = e-Ca-!l!PI/2 sinh (t /pl). (36) 

By analytic continuation from 0(3), the invariant 
group measure is 

I Si::P rd3x , 

which can also be verified directly. 
Therefore, the Fourier transform of the character 

that we must use is 

fffCaCp) . sin !p . e-iP'''d3x =fff [ieCa-!)£CZ)P 0>(p2) 
tp €(z)p 

+ e 0>( _ p2) e-iP·"d3x. 
-Ca-!)Ipi ] 

Ipi 
This can be evaluated using Fourier transforms of 
Bessel functions; it yields 

817
2b(pi + p~ - pi + (a - t)2W(P3)' (37) 

This is the delta function on the orbit through 
(0, 0, a - t). As in the case for 0(3), we do not get 
back to the original orbit, but to one displaced by t. 

B. Principal Series 

From (26), (28), and (30) we find the following 
expression for the character: 

Cip) = (217)-11 f e-imt/J /p* + 0(*ei t/JI-I+2iSe imt/J' dcp 

= f /fJ* + 0(*e
i
t/JrI+

2iSb( cp - cp') dcp, 
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where 
'4> W (J. + {3e' 

e = . 
f3* + (J.*ei 4> 

Now, e/> - e/>' = ° only has roots for elements of type 
II. Therefore, 

C!(p) = 0, for p > 0. (38) 

Taking y = z = 0, we obtain 

C;I(p) = t C-1+2
iS 11 + tei 4>I-1+2iS<'l(e/>_ e/>') de/>. 

Now 

<'l(e/> - e/>') = (17jt)[b(e/»/(1 + t) + b(ep - 17)/(1 - t»). 

Therefore, 

CII( ) = cos (s Ipl) for ip > 0. (39) 
• P sinh (! Ipl)' 

Evaluating the Fourier transform as for the discrete 
series, we obtain 

fff C.(p)· ei~:p) . e-
ip

,
x
d

3x 

= 8172b(p~ + p~ - p~ - S2). (40) 

This is the delta function on the orbit through (s, 0, 0); 
the principal series representations were induced from 
a subalgebra subordinate to the point (s + ii, 0,0). 

C. Supplementary Series 

Ifwe replace is by (/ in the principal series, we obtain 

(41) 

This result can also be evaluated directly by a similar 
method to that given in Sec. IV.B. This character has no 
finite Fourier transform. Below we list the characters 
of the various representations and their Fourier 
transforms: 

Discrete Series: a > 0: 

{
p2 > 0, for type I, 

p2 < 0, for type II. 

iei(a-!)f(z)p 

C I ( )----­
a P - 2 sin (ie(z)p] ' 

-(a-!)lpl Cu ( ) _ _ e __ _ 
a P - 2 sinh (t Ipi) 

Fourier transform: 

(33) 

(36) 

Ca(p) = 8172b(p~ + P: - pi + (a - W)O(Pa)' (37) 

(For the conjugate series, take complex conjugates.) 

Principal Series: s ~ 0: 

C;(p) = 0, (38) 

lI() cos (s Ipl) 
C p = . 

S sinh (t Ipl) 
(39) 

Fourier transform: 

C.(p) = 8172b(p~ + p~ - p~ - S2). (40) 

Supplementary Series: ° < (/ < t: 
C~{p) = 0, (41a) 

CII(p) = cosh (o' Ipl) . (41b) 
" sinh (t Ipl) 

There is no Fourier transform. 
These characters have the following completeness 

and orthogonality relations: 

00 00 

I C!(p)C!(p') + I C:a(P)C~(p') 
a=l a=l 

= 217b~p - pi) O[e{z) . e{z')], (42) 
4 sm2 (tp) 

2
1
17 [L"O(Z) + L"O( -z)] 

X 4 sin2 (!p)aCp)Ca.(p) dp = ba•a •• (43) 

-a denotes the representation conjugate to a. 

('" dsCII( )CII( ') = 217b(lpl - Ip'l) 
Jo • p s P 4 sinh2 (tip!) , 

,44) 

- 4sinh2(tlpI)C.(p)Cs.(p)dlpl = <'J(s - s'). (45) 1 foo -
217 0 

Therefore, the characters of the principal series and of 
the two discrete series for conjugation classes of type 
I form a complete and orthogonal basis for the class 
functions of 0(2, 1). 

V. CONCLUSION 

The orbits p~ + p~ - P: = _a2 < 0 of 0(2,1) for 
integer values of a are found to be in one-to-one 
correspondence with the representations (unitary, 
irreducible) of the two discrete series. These are given 
by the Kirillov construction, provided that the group 
is complexified and analytic functions specified. We 
find that the (suitably defined) Fourier transforms of 
the characters of these representations are delta 
functions-not on the corresponding orbits, but on the 
orbits with a replaced by a - t. 

The orbits p~ + p~ - ra = M2 > ° of 0(2, 1) are 
found to be in one-to-one correspondence with the 
representations of the principal series. However, since 
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these cannot be induced from unitary representations, 
M has to be complexified in order that the Kirillov 
construction yield the unitary representations. The 
Fourier transforms of the characters are delta func­
tions on these orbits. 

The remaining irreducible unitary representations 
of 0(2, 1), the supplementary series, are obtained by 
analytic continuation from part of the principal series; 
they have no direct relation with the Kirillov theory. 

Therefore we find that the Kirillov theory can be 
applied to some extent to 0(2, 1); this is probably true 

JOURNAL OF MATHEMATICAL PHYSICS 

for other noncompact semisimple Lie groups. There 
remain many questions to be answered, but it is hoped 
that the Kirillov method will be useful for finding 
representations of more complicated noncompact Lie 
groups which are currently of interest to physicists for 
the classification of elementary particles. 
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The S-matrix approach of Hurst is applied to rederive the partition function for the dimer problem. By 
using every two lattice sites as a unit cell and a set of six creation and annihilation operators at each cell, 
the expression for the partition is reduced to a form equivalent to the vacuum expectation value of an S 
matrix with a quadratic interaction Lagrangian. 

INTRODUCTION 

Recently Hurstl and Gibberd2 have shown that the 
Ising problem can be solved easily in terms of creation 
and annihilation operators in a way that the partition 
function is expressed in a similar form as the vacuum 
expectation value of the S matrix in quantum field 
theory. The solubility of the Ising model was related 
to the quadratic nature of the corresponding La­
grangian in the S matrix. This new method, referred to 
as the S-matrix method was also proved elsewhere3 

to be useful in solving many other two-dimensional 
models in statistical mechanics, such as the modified 
KDP model of ferroelectricity.4 In this note we apply 
it to the solution of the dimer problem which has been 
solved by Kasteleyn, TemperJey, and Fisher5 by using 
the Pfaffian method and reformulated recently in 
terms of transfer matrix by Lieb.6 Our purpose in 
doing so is to bring further attention to the usefulness 
of a method in handling statistical mechanical 
problems which has already been proved powerful in 
the theory of elementary particles. 

1 C. A. Hurst, J. Math. Phys. 7, 305 (1966). 
2 R. w. Gibberd and C. A. Hurst, J. Math. Phys. 8, 1427 (1967). 
3 C. Fan and F. Y. Wu, Phys. Rev. 179, 560 (1969). 
• F. Y. Wu, Phys. Rev. 168, 539 (1968). 
6 M. E. Fisher, Phys. Rev. 124, 1664 (1961); H. N. V. TemperJey 

and M. E. Fisher, Phil. Mag. 6, 1061 (1961); P. W. Kasteleyn, 
Physica 27, 1209 (1962); J. Math. Phys. 4, 287 (1963). 

• E. H. Lieb, J. Math. Phys. 8, 2339 (1968). 

I. THE PARTITION FUNCTION 

We consider a rectangular planar lattice of n rows 
and 2m columns closely packed with dimers. We group 
every two neighbors on a horizontal row into a unit 
cell; thus we have nm cells. This is shown in Fig. 1. 
It can easily be seen that for every unit cell there are 
ten allowed configurations. The unit cells are ordered 
helically from 1 to N (nm), from the left to the right 
and from the bottom to the top. To each cell j we 
assign three bonds: the bond (h), that connects this 
cell horizontally to the cell to its right and the bonds 
(r), and (I), that connect this cell vertically the cell 
above it. (r), stands to the right of (I),. To each of 
these bonds we assign a pair of creation and anni­
hilation operators a!h' , a?>t, etc. These operators form 
an anticommutative set. For convenience we define 
the following set of six operators: 

A (l)(j) = a~':!.l' 
A(2'(j) = a~:'.m' 
A(S'(j) = a~~m' 
A(4'(j) = a~h)t, 

A(6)(j) = a~'t, 

A(6'(j) = a~l)t, 

(1) 

which represent the six connections in each unit cell. 
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FIG. 1. Configurations of dimers and cells and the ordering of the 
connecting bonds. 

As shown in Fig. 1, they are arranged in a counter­
clockwise order starting from the left. 

We give a weight of x to every horizontal bond and 
y to every vertical bond. The weights are always 
allotted to the corresponding creation operators. Thus 
the partition function is 

N 
Z = (01 II {x + (A(3)(j) + XA(4)(j) + yA(5)(j» 

;~1 

x (A(l)(j) + A(2)(j) - yA(6)(j»} 10), (2) 

where the first term in the bracket represents the 
configuration without external bonds while the nine 
terms in the operator product are those each with 
two external bonds. More specifically, we have 

N 
Z = (01 II {x + at!) a(.h) + xa(~)t a(h) + ya(r)ta(.h) 

1-m 1-1 1 ;-1 ; 3-1 
;~1 

+ at!) am + xa(h)ta~Z) + ya(r)taW 
1-m :J-m 3 3-m 3 3-m 

+ ya~Z)ta~~m + xya~Z)ta~h)t + y2a~Z)tay)t} 10), 

(3) 

where (01 is the vacuum state as defined in quantum 
field theory. 

Using the anticommutative property of those oper­
ators, it can easily be rewritten as an exponential 
function of a quadratic form: 

Z = x
N 

(01 T{exp t ;~1 ~:~ k"qA"(j)Aq(j)} 10), (4) 

where the k matrix is 

0 0 -l/x -1 -y/x 0 

0 0 -l/x -1 -y/x 0 

l/x l/x 0 0 0 -y/x 
.[k] = 

1 1 0 0 0 -y 

y/x y/x 0 0 0 -l/x 

0 0 y/x y l/x 0 
(5) 

where T denotes an ordering operator which requires 
the terms obtained on expanding the exponential to be 
written from right to left in order of increasingj. 

By means of Wick's theorem we sum up the series 
expansion of the partition function and finally obtain 
the expression for its logarithm: 

N 

log Z = t L log det [/ - kA] + N log x, (6) 
r~1 

where I is the identity matrix and A is the matrix of 
Fourier transform of the cell-ordered contractions: 

0 0 0 w-r 0 0 

0 0 0 0 0 w-mr 

0 0 0 0 w-mr 0 
[A] = _wr 0 0 0 0 0 

0 0 _wmr 0 0 0 

0 _wmr 0 0 0 0 

(7) 
and w = exp (27Ti/ N). 

In the limit of infinite lattice size the summation is 
reduced to a double integral 

2mn i2" i2" log Z = 2 dO dq; 
2 X 87T 0 0 

x log 4(x2 sin2 to + y2 sin2 q;) 

= 2nm i" doi" dq; 
(27T)2 0 0 

x log 2[(x2 + l) - x2 cos2 0 - l cos2 q;] 

(8) 

which is the previous result for the dimer problem.7 

Finally, we have to point out two facts which we 
have postponed until now for discussion. First, it 
requires a proof to verify that in the expansion of (3) 
all the graphs associated with the operator products 
have the same parity. The parity of a graph, even or 
odd, is the permutation needed to bring all the creation 
operators and their corresponding annihilation oper­
ators into pairs. Secondly, the edge effect should be 
clarified. 

, E. w. Montroll, in Applied Combinatorial Mgthematics, E. F. 
Beckenbach, Ed. (John Wiley & Sons, New York, 1964), Chap. 4. 
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2 

g (a) 

3 4-

:1 : ( (b) 

2 
3 ... 6 , 7 

--- --- (c) 

----' 

J 2 
FIG. 2. Types of connected graph: (a) dumbbell graphs; ,<b) closed 

polygons; (c) closed loops involving boundary cells. 

II. PARITY OF GRAPHS 

Because there is no term involving four bonds from 
the same cell, all the graphs are thus non intersecting 
union of the following three types of connected 
graphs: (a) dumbbell graphs, where two vertically 
neighboring cells are connected with both right and 
left vertical bonds ; (b) closed polygons, where the cells 
are connected into a closed loop without crossing or 
intersecting; (c) closed loops involving cells at the 
boundaries. They are shown in Fig. 2. 

For the dumbbells we have the parity equal to 1, 

pear) a~!l a~llt a~r)t) = p(a~r) a~r)t) = 1; (9) 

(0) 

x 

x 

(b) 

FIG.3. Addition of vertical columns 
of cells. 

with two more cells added, we have, for Fig. 2(b), the 
smallest polygon 

p(a~) a~hl a~hlt a~!l a~r)t alh)all)ta?)t) 

= p(a~) ail) a~)t aihl ail)t a~hlt) 

= p(a~r)a~r)talh)ail)a~z>taih)t) = 1. (10) 

For a general graph as in Fig. 3(a), since every cell 
contributes a pair of operators, therefore, if we fix 
the order of the two operators at each cell, we can 
permute the pairs without changing the parity. Thus, 
the pair 3 can permute with 4 and 5, 7 and 8 can 
permute with 3 and 6, while 10 and 11 can permute 
with 3, 6, and 9; we have then 

(a~) aW)(a~)t a~hl)(ar) a~hl)(ar)t a~h»( ai~)t ai~»(ai~)t a~l)(a~h)t a~!)(a~nt ar»(a~l)t a1h)t)(a~r)t a~ll)(a~·)t a~h)(alnt a~h)t) 

12 9 6 3 11 10 8 7 5 4 2 1 

which in simpler notation is 

(12,9,6,3)(11,10,8,7,5,4,2,1). (12) 

In other words, we can order the pairs in the two 
groups across the partition in a way as if these two 
groups are independent of each other. We use this 
result to complete our proof by means of induction 
method. 

We proceed to consider a graph consisting of a 
group of operators called X with terminal cells 1 and 4 
connected to cells 2 and 5 as shown in Fig. 3(b). We 
wish to compare the parities of the graphs before and 
after the addition of a vertical column of cells (3, 6). 
Before the addition 

p[a~r)a~h)a~r)taihl(X)] = p[alh)a~h)(X)]; (13) 

(11) 

after the addition of (3, 6) and removal of the vertical 
bond between 2 and 5, we have 

p[a~r) a1hl a~hlt a!hla~rlt a~hla~hlt a~h)(X)] 

= pearl aih) a~rlt a~·l a~h)t aihl(X)] = p[aihl a~hl(X)]. (14) 

For a more general case of adding a column of six 
cells as shown in Fig. 3(c), we have before the addition 

p[ai~ a~~l ai~t a~ll a~!lt a~rla~rlt ailla~llt alh'(X)] 

= p[a~~a~~la~~taih)(X)] = p[a~"ai~I(X)] (15) 

and after addition 

p[a(rla(hla(hlta(hla(rltaWawta(rla(rlt 
11 13 13 12 11 9 9 7 7 

X a~!la~!lt ar)a~r)t a~hla~hltalh)(X)] 

= p[al;)aWairi talhl(X)] = p[aihlai~I(X)]. (16) 



                                                                                                                                    

SOLUTION OF THE DIMER PROBLEM BY THE S-MATRIX METHOD 871 

(0) 

Ie) 

Ib) 

FIG. 4. Addition of horizontal 
rows of cells. 

So, indeed, the parity does not change according to 
our rules of ordering. 

The whole procedure can be similarly applied to the 
case of horizontal connections. The corresponding 
graphs are shown in Fig. 4. 

Since every closed polygon can be constructed from 
the dumbbell graph by successively adding necessary 
rows and columns of cells and removing the redundant 
bonds, we therefore have in fact completed the proof 
for the correct parity of the closed polygons. 

III. THE EDGE EFFECT 

As for the third type of graphs involving the 
boundary cells as in Fig. 2(c) , the parity is found 
unfortunately to be negative: 

p(aill • .• a~h)a~h)ta~h)a~h)taih)all)taih)t) 

= p(aillalh)ailltai'dt) = -1. (17) 

However, in addition to this trouble, we also have 
complication due to the edge effect. For instance, 
along the first row at the bottom the annihilation 
operators are not defined because j - m and j - 1 are 
negative; there are just no bonds beyond to be 
annihilated. Likewise along the top row there are no 
bonds to be created. Here we have to define 

a liI) - all)t alr)t - a lrlt 
- - HN' i - - HN' 

for 1 - m ~ j ~ 0, (18) 

which means we impose toroidal boundary condition 
for the vertical columns. In any case the problem 
pertaining to edge effect is troublesome only as a 
matter of mathematical rigor, since physically when 
the lattice size approaches infinity in the thermo­
dynamic limit, it will become asymptotically insignif­
icant because the boundary to area ratio is then 
almost zero. This has been discussed by Hurst and 
Green.s 

It is found difficult to formulate the monomer­
dimer problem in this S-matrix method, as the graphs 
cannot be proved to have the same parity with both 
linear and quadratic terms of operators being in­
volved. 
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Using characters, one can set up the theory of representations for both finite and continuous groups. 
For continuous groups, another approach-the Lie theory-is also possible. It is shown that a similar 
theory, based on commutators, can be developed also in the case of finite groups. Essentially, the group 
algebra of a finite group is converted into a Lie algebra by replacing the usual associative product by the 
product x 0 y = xy - yx. Then the resulting Lie algebra is a direct sum of special unitary Lie algebras. 

1. INTRODUCTION 

The theory of representations of continuous groups 
can be developed along two different lines: 

(A) The first approach is an almost straightfor­
ward generalization of the theory of characters of 
finite groups.l 

(B) The second approach-the Lie approach-is 
based on the algebra of the generators of the infini­
tesimal elements. 2 

The literature is usually rather partial towards 
either one or the other method. In books following 
line A, it is useless to search for words like "root 
diagram," "maximum weight," etc.; often the very 
name of Lie is missing. Similarly, in books following 
line B"even the definition of such a basic concept as 
the character of a representation is often missing. 

Yet both approaches are useful and complementary. 
There are problems (for example, the splitting of a 
degenerate level in a crystal) that can be attacked 
only with approach A, whereas in other cases the 
approach B-through the use of commutators-gives 
a better insight into the quantum-mechanical nature 
of a problem. 

With finite groups, there seems to be only one 
approach, namely A. In this paper we would like to 
show briefly that an approach of type B can be 
developed also in the case of finite groups. Of course, 
in a finite group there are no infinitesimal elements. 
There are, however, commutators on which a Lie-like 
theory can be developed. It is hoped that the new 
approach will give a better insight into the theory of 
groups of finite order and show more clearly relations 
between discrete and continuous groups. 

1 H. Weyl, The Classical Groups (princeton University Press, 
Princeton, N.J., 1946); F. D. Murnaghan, The Theory of Group 
Representations (The Johns Hopkins Press, Baltimore, 1938); H. 
Boerner, Darstellungen von Gruppen (Springer-Verlag, Berlin, 1967). 

• E. Cartan, "Sur la structure des groupes de transformations 
finis et continus," These, Paris, 1894; G. Racah, Group Theory 
and Spectroscopy (Institute of Advanced Studies, Princeton, N.J., 
1951). See, for other references, R. E. Behrends et 01., Rev. Mod. 
Phys.34, 1 (1962). 

2. THE BASIC THEOREM 

The easiest way to arrive at a Lie-like theory for 
finite groups is to consider the regular representation. 
It is well known that the regular representation is 
reducible and contains every irreducible representa­
tion of dimensionality ni exactly ni times, this fact 
being at the root of the formula 

n~ + n~ + ... + n~ = N (1) 

that relates the dimensionalities of the k irreducible 
representations nl , n2 , ••• ,nk to the order N of the 
group. Therefore, the matrix of the regular representa­
tion corresponding to an arbitrary element of the 
group can always be written as a sum of smaller 
matrices with a total maximum number of different 
matrix elements equal to the order of the group. 

For example, take the group 7T3' the symmetric 
permutation group on three variables, of order 6. In 
the regular representation, every element A, B,' .. 
can be written in the form 

A= 

B= 

e f 

a~~Cd 
I---j 

C d 

e f 

~'I-' 
c' d' 

e' f' 

c' d' 

e' f' 

, etc., (2) 
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with a maximum of 6 different matrix elements (a, b, 
c, d, e,f, or a', b', c', d', e',f', etc.). 

It is, therefore, always possible to substitute the 
original N group elements, A, B, ... , with other N 
linear combinations of group elements, having all the 
a, b, c, ... equal to zero, except one. In the above 
example the new elements will be of the form 

~ o~~ 
o 0 0 0 

o 0 0 0 
1---\ 

o 0 o 0 

o 0 o 0 

O~lO ~Ol 
~ 0 0 

1 0 0 1 

o 0 o 0 

~~ o 0 

1 0 

o 

°lu° o 1 
1---\ 

I ° 
0 

1 0 

o 0 

o 1 

(3) 

By inspection we arrive, therefore, at the following: 

Theorem: It is always possible to rearrange linearly 
the elements of a finite group into sets of "operators," 
in such a way that operators belonging to different 
sets commute, whereas operators of the same set have 
the commutation relations of the generators of the 
infinitesimal elements of some special unitary group 
SU(n). 

3. AN EXAMPLE 

Consider the group 7T4, the symmetric permutation 
group on four variables. It is a group of order 24, 

sufficiently complex to make the results not trivial 
and yet sufficiently simple to allow a complete 
solution within a reasonable amount of space. The 
multiplication table of this group is identical with the 
multiplication table of the octahedral group given in 
Lomont's book,s whose notation for the elements 
will be used.4 

The results of Sec. 2 amount to saying that the 24 
elements can be rearranged into 24 "operators" 
separated into 8 sets. Operators belonging to different 
sets commute. Operators belonging to the same set 
have the indicated commutation relations. The eight 
sets are the following: 

(I) C1 = I, 

(II) C2 = S + 10 + 13 + 16 + 18 + 21, 

(4) 

(5) 

(III) Ca = 2 + 4 + 9 + 11 + 12 + 14 + 20 + 22, 

(6) 

(IV) C4 = 1 + 3 + 7 + 8 + 15 + 23, (7) 

(V) C6 = 6 + 17 + 19. (8) 

The above sets, each containing only one operator, 
are the well-known class operators that commute with 
every element of the group. 

(VI) A set of three operators, with the commutation 
relation of the three generators of the infinitesimal 
rotations of SU(2): 

[Lo, L+] = L+, [Lo, L_] = -L_, 

[L+, L_l = 2Lo• 

They are the following ones: 

Lo = (1 + 2W)-1{2 + 4 + 20 + 22 - 9 - 11 

(9) 

- 12 - 14}, w = ei (211/S) , (10) 

L+ = /2{1 + 7 + 16 + 18 + w(3 + 5 + 21 + 23) 

+ w2(8 + 10 + 13 + 15)}, (11) 

L_ = /2 {1 + 7 + 16 + 18 + w2(3 + 5 + 21 + 23) 

+ w(8 + 10 + 13 + 1S)}. (12) 

(VII) A set of eight operators, with the commuta­
tion relations of the generators of the infinitesimal 
rotations of SU(3), as given in standard form in 
Behrends et al. [Ref. 2, formula (11.12)]. They are the 

• J. S. Lomont, Applications of Finite Groups (Academic Press 
Inc., New York, 1959), p. 33. 

4 Boldface type indicates a group element in I.omont's notation, 
lightface type denotes ordinary numbers. 
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following ones: 

E1 = [1/8(6t)]{12 + 13 + 14 + 15 - 8 

- 9 -10 -ll}, (13) 

Kl == [l/8(6t»){2 + 8 + 13 + 20 - 4 

- 10 - 15 - 22}, (14) 

E2 = [lj8(6t)]{2 + 3 + 4 + S - 20 

- 21 - 22 - 23}, (15) 

E_2 = [1/8(6t)]{5 + 11 + 12 + 23 - 3 

- 9 - 14 - 21}, (16) 

Ea = [1/8(6t)]{1 + 9 + 12 + 16 - 7 

- 11 - 14 - I8}, 

E_3 = [l/8(6t)]{2 + 7 + 16 + 22 - 1 

- 4 -18 - 20}, 

H1 = [lj16(3!)]{2(6 - 17) + 1 + 5 + 7 + 21 

- 3 - 16 - 18 - 23}, 

(17) 

(18) 

(19) 

H2 = ls{-4(19) + 2(6 + 10 + 13 + 17 - 8 - IS) 

E~l = [1/8(6*)] 

x {2 + 10 + 15 + 20 - 4 - 8 - 13 - 22}, 

(22) 

E~ = [1/8(6i )] 

x {2 + 4 + 21 + 23 - 3 - 5 - 20 - 22}, 

(23) 

E~2 = [1/8(61)] 

x {3 + 11 + 12 + 21 - S - 9 - 14 - 23}, 

(24) 

E~ = [l/S( 6t )1 

x {7 + 9 + 12 + 18 - I - 11 - 14 - 16}, 

(25) 

x {I + 2 + 18 +-22 - 4 - 7 - 16 - 20}, 
(26) 

+ 1 + 3 + 7 + 23 - 5 - 16 - 18 - 21}. (20) H~ = [1/16(3t)]{2(6 _ 17) + 3 + 16 + 18 
(VIII) Another set of eight operators with alJ 

SU(3) algebra, as follows: 

E{ = [1/8(6*)] 

x {8 + 10 + 12 + 14 - 9 - 11 - 13 - IS}. 

(21) 

+ 23 - 1 - 5 - 7 - 21}, (27) 

H~ = ls{-4(19) + 2(6 + 8 + 15 + 17 - 10 - 13) 

+ 5 + 16 + 18 + 21 - 1 - 3 - 7 - 23}. 

(28) 
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The integral equation describing the transport of monoenergetic, isotropically scattered neutrons in a 
one-! two-, or three-dimensional body of arbitrary convex shape, containing distributed sources, is 
consl?ered. An e.xact representation of the .neutro~ densi~y p(r) is obtained, involving a superposition of 
!UnctIOns belongIng to the null space of a Simple differentIal operator. In general, when a countable basis 
I~ chose~ to span the .null sp~ce,. the c~fficients in the expansion of p(r) satisfy a coupled system of 
SIngular Integra~ ~qu~tIOns w.h~ch ~s reducible .to a system of Fredholm equations. If no sources are pres­
ent, an exact cntlcahty conditIon IS also obtaIned. Some techniques for evaluating the expansion coeffi­
cients are given and several examples are considered. 

1. INTRODUCTION 

Analytical solutions of the equations of neutron 
transport and radiative transfer have been obtained 
only for a small class of highly idealized problems. 
Perhaps the simplest such problem concerns the 
transport of monoenergetic neutrons in a plane, 
homogeneous, isotropically scattering medium. An 
expression for the neutron density p(x) due to a point 
source in such a medium was first obtained by the 
Wiener-Hopf technique,! although this problem can 
also be solved by the method of singular eigenfunctions 
introduced by Case in 1960.2 In principle, Case's 
method can be applied to any plane geometry problem, 
and it leads to a precise representation of the angular 
density "p(x, ft) as a superposition of elementary 
functions. However, the expansion coefficients are 
defined as the solution of a singular integral equation 
and can be found explicitly only for a few special 
problems. Thus, strictly speaking, Case's method 
does not provide a complete solution of the problem, 
but rather a mapping of one problem (the integro­
differential transport equation) into another (the 
singular integral equation for the coefficients). 
Nonetheless, Case's representation gives considerable 
insight into the mathematical structure of the solution 
and, for many practkal problems, excellent approx­
imations exist for the expansion coefficients. 

Since 1960, a great many papers have appeared 
extending Case's work to include anisotropic scatter­
ing, time and energy dependence, and media with 
piecewise-variable properties. Most of this work has 
been restricted to plane geometry, although a notable 

• Work supported by Battelle Memorial Institute. 
1 K. M. Case, F. de Hoffman, and G. Placzek, Introduction to 

the Theory of Neutron Diffusion, Vol. J (Los Alamos Scientific 
Laboratory, Los Alamos, New Mexico, 1953). 

2 K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960). 

exception occurs in the work of Mitsis,3 who con­
sidered the criticality problems for the sphere and 
infinite cylinder. By using techniques analogous to 
Case's, he showed that these problems can also be 
reduced to the solution of singular integral equations. 
Case and Zweifel4 have observed that the same equa­
tions can be obtained by exploiting a certain replica­
tion property of the kernel of the integral transport 
equation. 

In contrast to the number of one-dimensional 
transport problems which have been treated success­
fully either by the Wiener-Hopf technique or by 
Case's method and its extensions, little progress has 
been made in solving transport problems in two and 
three dimensions. While Bareiss and Abu-Shumays5 

have exhibited a vast collection of separable solutions 
of the three-dimensional transport equation, it is not 
yet clear how a minimal number of these solutions 
is to be selected to treat any given problem or how 
the corresponding expansion coefficients are to be 
determined. In an alternative approach, Williams6 

and Kaper7 have attempted to reduce the same equa­
tion to an "equivalent" one-dimensional equation by 
postulating a simple form for the neutron density in 
two of the dimensions-e.g., exp [i(B",x + Bvy)]-and 
solving exactly for the functional dependence in the 
remaining dimension. While both of the preceding 
approaches have produced significant insights, neither 

~!? J. Mitsis, ,,"Transport Solutions to the Monoenergetic 
CntIcal Problems, Report No. ANL-6787, Argonne National 
Laboratory, Argonne, Illinois, 1963. 

• K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison­
Wesley Pub!. Co., Reading, Mass., 1967), Appendix 1. 

5 E. H. Bareiss and I. K. Abu-Shumays, "On the Structure of the 
Isotropic Transport Operator in Three Independent Space Vari­
ables," Report No. ANL-7328, Argonne National Laboratory, 
Argonne, Illinois, 1967. 

• M. M. R. Williams, Nukleonik 9,305 (1967). 
7 H. G. Kaper, J. Math. Phys. 10, 286 (1969). 
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has yet led to an exact solution of a realistic three­
dimensional transport problem. 

Recently, Williams8 has exploited the replication 
properties of the kernel of the integral transport 
equation to obtain a precise representation of the 
neutron density in some simple two-dimensional 
problems. As in Case's method, the expansion 
coefficients must be determined by solving a singular 
integral equation. 

In the present paper, the replication method is 
extended to obtain a representation of the neutron 
density valid in an arbitrary convex body. The 
representation will be seen to involve a superposition 
of functions belonging to the null space of a simple 
differential operator. Many equivalent representations 
are possible, depending on the basis chosen to span 
the null space. If a countable basis is chosen, the 
coefficients in the expansion of the neutron density 
must generally be obtained as the solution of a 
coupled system of singular integral equations, although 
in special cases the equations may be uncoupled. 

The basic formalism is developed in Secs. 2 through 
6. In Secs. 7 and 8, some simple examples are con­
sidered as illustrations. The infinite-medium case is 
discussed in Secs. 9 and 10, and techniques for 
obtaining approximate values of the expansion 
coefficients and approximate criticality conditions are 
discussed in Secs. 11 and 12. 

2. BASIC EQUATIONS 

Since the present analysis applies to problems in 
either one, two, or three dimensions, it is convenient 
to use a common notation to denote certain quantities, 
regardless of their dimensionality. Thus, in what 
follows, rand \72 denote, respectively, the position 
coordinate(s) and the Laplacian operator in the 
appropriate coordinate system; similarly, S dr denotes 
integration over the (one, two, or three) position 
coordinate(s). 

We consider an arbitrary, convex, finite region D, 
with surface D, in one-, two-, or three-dimensional 
space. The origin of the coordinate system will be 
taken to be inside D or on D. We assume that 
neutrons scatter isotropically, and let c denote the 
mean number of secondaries per collision. If length is 
measured in units of the mean free path, the mono­
energetic neutron density per) satisfies the equationl 

per) = c fDP(r')K(lr - r'l) dr' + po(r), rED. (2.1) 

Here po(r) is the uncollided density, due to sources 
inside D or to neutrons entering D from outside. In 

8 M. M. R. Williams, J. Math. Phys. 9, 1873, 1885 (1968). 

the three-dimensional case, the kernel K(lr!) is given 
by 

e-r il e-rl/l dp, 
K(lrl) = - = - - . 

411'r2 0 411'r p,2 
(2.2a) 

The kernels for one- and two-dimensional problems 
are obtained by integrating Eq. (2.2a) over the 
superfluous coordinates; thus 

K(lrl) = - Ko - -1 il (r)dp, 
211' 0 P, p,2 

(2.2b) 

in two dimensions and 

(2.2c) 

in one dimension. 
In what follows, we assume that po(r) is produced 

by a distribution S(r) of isotropic sources in D. For 
this case, 

po(r) = ID S(r')K(lr - r'l) dr', (2.3) 

and Eq. (2.1) becomes 

per) = fD[cp(r') + S(r')]K(lr - r'l) dr', rED. (2.4) 

More general problems, involving anisotropic sources 
or incident neutrons, can be treated by writing the 
density as 

per) = po(r) + PI(r). (2.5) 

Substitution of this form into Eq. (2.1) shows that 
P1(r) satisfies Eq. (2.4) with S(r) = cpo(r). It is thus 
sufficient to study Eq. (2.4). 

We note that the right-hand sides of Eqs. (2.2) give 
an integral representation of K(lr!) in terms of the 
infinite-medium Green's function of the Helmholtz 
equation, i.e., 

i l d 
K(lr!) = G(r, p,) ~, 

o p, 
(2.6) 

where 

(_\72 + p,-2)G(r - r',p,) = J(r - r'). (2.7) 

Tn exploiting this fact, we generalize the approach 
used by Mitsis to solve the criticality problem for the 
infinite cylinder. By inserting the representation, 
Eq. (2.6), into Eq. (2.4) and interchanging the order 
of integration, we obtain 

i l dp, 
per) = F(r, p,) 2" rED, 

o p, 
(2.8) 

where 

F(r, p,) = f)cp(r') + S(r')]G(r - r', p,) dr'. (2.9) 
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Equations (2.8) and (2.9) may be thought of as a 
transform pair, in the sense that if the actual per) 
satisfying Eq. (2.4) is used in Eq. (2.9), then the 
resulting F(r, ft), when substituted into Eq. (2.8), 
reproduces that per). In deriving these coupled 
equations for per) and F(r, ft), we began with an 
equation for per) alone. This process can be continued 
to obtain an equation for F(r, ft) alone; by applying 
the operator (-V2 + ft-2) to Eq. (2.9) and using 
Eqs. (2.7) and (2.8), we obtain 

(-V2 + ft-2)F(r, ft) - C (IF(r, ft) d~ = S(r). (2.10) 
Jo ft 

The F(r, ft) corresponding to the actual solution of 
Eq. (2.4) must be a solution of Eq. (2.10), although 
this equation may have many other solutions as well. 
We will construct the general solution of Eq. (2.10), 
which contains certain arbitrary coefficients, and then 
select the coefficients so that Eqs. (2.8) and (2.9) are 
mutually consistent. The density per) will then be 
given by Eq. (2.8). 

3. SOLUTION OF THE HOMOGENEOUS 
EQUATION 

To obtain the general solution of Eq. (2.10) we 
need both a particular solution F,p(r, ft) and the 
general solution of the homogeneous equation 

(-V2 + ft-2)F H(r, ft) - C (\'H(r, ft) d~ = O. (3.1) 
Jo ft 

We defer construction of Fp(r, ft) until later. Equation 
(3.1) can be solved by separation of variables: Let 

F H(r, ft) = f(v, ft)R(v, r), (3.2) 

where v is a separation parameter. Substitution of this 
ansatz into Eq. (3.1) leads to 

V
2
R(v, r) = ! __ c _ (If(v, ft) dft . (3.3) 

R(v, r) ft2 f(v, ft) Jo ft2 

By the usual argument, each side of Eq. (3.3) is a 
constant, which we denote by l/v2• Thus, 

(1 1) il dft "2 -"2 f(v,ft) = C f(V,ft)2 
ft v 0 ft 

(3.4) 

and 

( _V2 + ~)R(V, r) = o. (3.5) 

Equation (3.4) is independent of the domain D and is 
thus the same equation as the one obtained for the 
cylindrical criticality problem by Mitsis, whose 
results apply here. In particular, with the (arbitrary) 

normalization chosen to be 

i l dft 
f(v, ft) 2 = 1, 

o ft 
(3.6) 

Mitsis found that Eq. (3.4) has one discrete solution 

CV~ft2 
f(vo, ft) = -2--2 

Vo - ft 
(3.7) 

plus a continuum of singular solutions 

CV2ft2 2 
f(v, ft) = -2--2 + ft A(ft)b(ft - v) (3.8) 

v - ft 

for v E (0, 1). Here Vo is the root of the equation 

cVo tanh-1 Vol = 1, (3.9) 

and is tabulated in Ref. 1. The function A(ft) is given by 

A(ft) = 1 - cft tanh-l ft, (3.10) 

and is the same function as introduced by Case. 2 As 
observed by Mitsis, 

I(v, ft) = ft2[cp.Ct-t) + CP-.(ft)]' (3.11) 

where the CP.Ct-t) are Case's singular eigenfunctions. 
However, the functions CP.(ft) are convenient only for 
treating problems in plane geometry; the functions 
I(v, ft) arise more naturally in arbitrary geometry 
and should be considered fundamental. 

From Eq. (3.11) and the completeness theorem 
proven by Case for the cP.(ft) , it follows that the 
functions I(v, ft) form a complete set in the space of 
all functions h(ft) , defined on 0:::; ft :::; 1, which 
satisfy the requirements: 

(a) hCt-t)/ft2 satisfies the Holder condition9 at each 
point of the open interval 0 < ft < 1; 

(b) near the points ft = 0 and ft = 1, h(ft)/ft2 has, 
at worst, weak singularities. 

Specifically, this means that for each such function 
heft) there exist expansion coefficients A(vo) and A(v) 
such that 

heft) = A(vo)f(vo, ft) + fA(v)f(v, ft) dv, (3.12) 

where the integral is to be interpreted as a Cauchy 
principal value. The expansion converges to the 
even extension of heft) for -1 :::; ft :::; o. 

Some additional properties of the functions I(v, ft), 
analogous to properties of Case's functions, are 
easily obtained. From Eqs. (3.4) and (3.6) it follows 
that 

(If(v, ft)f(v', ft) d~ = 0, v ¥= v', Jo ft 
(3.13) 

• N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff, 
Groningen, The Netherlands, 1953). 
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and by applying the Poincare-Bertrand theorem9 we 
find that 

ef ( 1', fl) [ fl A( v')f(v', /1,) dv'] d~ = ~ A(l') 
Jo Jo ft gee, v) 

(3.14) 

for v E (0, 1), where A(v) is an arbitrary function 
satisfying the Holder condition. Here, 

(3.15) 

is the function tabulated in Ref. 1. Finally, we find by 
direct computation that 

fJ\vo, ft) d~ = 2: V~{+-1 - ~}. 
Jo ft Vo - Vo 

(3.16) 

It is convenient to denote this last expression by 
v~/g(c, Yo); i.e., we extend the definition of g(c, v) 
to the point v = Vo by setting 

2 {e 1 }-l gee, Yo) = -2 -2-- -"2 . 
evo Vo - 1 Vo 

(3.17) 

The above results can be used to obtain the expan­
sion coefficients in Eq. (3.12). In particular, it is of 
considerable utility to represent the function heft) = 1 
as a superposition of the fey, fl). Since ft- 2 has a 
second-order pole at fl = 0, Case's completeness 
theorem does not guarantee that this expansion is 
possible; however, formal application of the above 
properties of f( v, ft) yields 

gee, Yo) il dv (3 8) 1 = --2 -f(vo, ft) + gee, v)f(v, fl) 2" . .1 
Vo 0 v 

It is shown in Appendix A that this representation is, 
in fact, rigorous. 

In what follows, it is often necessary to exhibit 
expressions involving both discrete and continuum 
terms, and to condense notation we write 

(3.19) 

whatever the function hey) may be. In particular, Eq. 
(3.18) becomes 

f dv 
1 = gee, v)f(v, ft) 2" . 

v v 
(3.20) 

This concludes the discussion of the properties of the 
functions fey, ft)· 

The functions R(v, r), which also arise in solving 
Eq. (3.1), satisfy Eq. (3.5), i.e., they belong to the 
null space of the operator (- '\72 + v-2). If a basis is 
chosen for the null space, any solution R(v, r) can be 
expressed as a linear combination of the basis elements. 

We note that problems of practical interest do not 
require consideration of the most general null space 
of (- '\72 + v-2) but only of some restricted null space. 
For example, it follows from Eq. (2.9) that for a 
finite domain D we need consider only functions 
which are bounded in D. In addition, the solutions 
must be invariant under an integral number of 
rotations about any axis. Thus, some possible choices 
of bases are 

and 

{il(r/v)y:,,(e, tfo); 1 = 0, 1, ... ; m = 0, ±1, ... , ±l} 

for one-, two-, or three-dimensional problems, 
respectively. Here Ik and i l denote the cylindrical and 
spherical modified Bessel functions, and Yr' the 
spherical harmonics. The above choices will be 
referred to as the standard bases, although we are by 
no means constrained to use only these. For example, 
the set {Ik(r/v)e ikB} should be most convenient when D 
is a circular cylinder (although it is not limited to this 
case), while, if D is an elliptic cylinder, elliptic co­
ordinates and a basis involving Mathieu functions 
may be more convenient. This point will be further 
illustrated in Sec. 8. 

How many elements are required to form an 
acceptible basis? In plane geometry, any basis of the 
restricted null space consists of at most two linearly 
independent combinations of e:!:"'!v. [If the problem is 
symmetric in x, only the even combination cosh (x/v) 
is required.] In two- or three-dimensional problems, 
an infinite number of elements is usually required 
unless a high degree of symmetry is present. As long 
as only one position coordinate is nonperiodic (e.g., 
r), while the other(s) are periodic (e.g., e or e, tfo), the 
basis is countable. However, if Cartesian coordinates 
are used, this simplification is lost and a continuum 
basis is required. For example, it can be shown that the 
set {exp (rxx/v) cosh (l - rx2)t(y/V), -1 ~ rx ~ I} is 
admissible for two-dimensional problems symmetric 
in y. The analysis following applies to problems 
involving either countable or continuum bases, 
although the former case is somewhat more trans­
parent. Thus, in the present paper, we assume that 
one of the standard bases, or some other countable 
basis, has been chosen. To a large extent, the use of a 
continuum basis requires only the replacement of 
certain sums by integrals; however, this topic will be 
treated in detail in a later paper. 

Let {Rn(v, r)} denote the chosen basis, where 11 

may denote, for example, the single index k or the 
pair of indices (I, m) of the standard bases. In terms 
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of this basis, the most general admissible solution of 
Eq. (IS) is 

R(v, r) = L AJv)R,,(v, r), (3.21) 

where the An(v) are arbitrary coefficients. The most 
general admissible solution of the homogeneous 
equation (3.1) is thus 

FH(r,fl) = f/(V'fl)(~A"(V)R,,(v,r)) e1v 

= L [ An(v)f(v, fl)Rn(v, r) dv. (3.22) 
n Jv 

4. THE GENERAL SOLUTION 

To complete the solution ofEq. (2.10), it is necessary 
to construct a particular solution Fp(r, fl). This will be 
accomplished through application of the following 
theorem. 

Theorem: Let Dl denote some region in space, with 
surface D1 , and let !per, fl) be a solution of the equa-
tion 

as required. For r on D1 , from Eqs. (4.3) and (4.2) 
we obtain 

F,.(r, 11,) = gee, v)f(v, 11,) :. T(r) = T(r), (4.7) J
' d 
• v 

as required. This completes the proof. 

The theorem will be used to construct an Fp(r, fl) 
which vanishes as r -->- 00. To do this, let DI be the 
infinite medium, let T(r) = 0, and let Sl(r) be zero 
outside D and equal to S(r) inside D An appropriate 
solution of Eq. (4.1) is 

!p(r,fl) = ivG(r - r',fl)S(r')dr~. (4.8) 

Thus, the function 

Fp(r, fl) = 19(e, v)f(v, fl{L G(r - r', v)S(r') dr'J~: 
(4.9) 

(_y2 + fl- 2)!p(r, fl) = Sl(r), r E D1. 

Let <per, fl) satisfy the boundary condition 

!per, fl) = T(r) , r E Dl · 

(4.1) is a particular solution of Eq. (2.10) which vanishes 
as r -->- 00. 

The most general admissible solution of Eq. (2.10) 
(4.2) is obtained by combining Eqs. (4.9) and (3.22): 

Here Sl(r) and T(r) are given functions, independent 
of fl. Then the function 

f dv 
Fir, fl) == gee, v)f(v, fl)'P(r, v) 2" 

v v 
(4.3) 

satisfies the equation 

2 2 11 dfl (-y + fl- )Fp(r, fl) - e Fir, fl) 2" = Sl(r), 
o fl 

r E D1 , (4.4) 

and Fp(r, fl) satisfies the same boundary condition as 
!per, fl) on D1 • 

Proof Write 

(- V'2 + fl-2) = (-V'2 + v-2) + (w2 - v-2) (4.5) 

and substitute Eq. (4.3) into the left-hand side of 
Eq. (4.4). By using Eqs. (4.1), (3.4), and (3.20), we 
obtain 

T'72 -2 i I dfl 
(- v + fl )F ir, fl) - e F per, fl) 2-

o fl 

= r gee, v)f(11, fl) d: . Sl(r) J. v 

+ 19(e, v{ (~ - ~ )f(v, fl) - e ff(v, fl) ~J 
dv 

x <per, v) 2" = Sl(r), 
v 

(4.6) 

F(r, fl) = I gee, v)f(v, fl) (L G(r - r', 11)S(r') dr') ~: 

+ ~ i An(v)f(v, fl)RnCv, r) dv. (4.10) 

By substituting this expression into Eq. (2.8) and 
using the normalization of fey, fl). we obtain 

per) = i gee, v)(L G(r - r", v)S(r") dr")~: 

+ ~ I A,,(v)Rn(v, r) dv. (4.11) 

This representation of per) in terms of the Green's 
function and solutions of the Helmholtz equation 
is the main result of this paper, 'but before discussing 
its implications we proceed to show how the coeffi­
cients An(v) are evaluated. 

5. EVALUATION OF THE COEFFICIENTS 

For the one-dimensional criticality problems, 
Mitsis was able to deduce a boundary condition, 
satisfied by F(r, fl) on D, from which he could evaluate 
his (single) A(v). Unfortunately, this approach does 
not apply to an arbitrary domain D; instead, the 
expression for per) must be substituted into Eq. (2.9) 
and the An(v) chosen so that the original F(r, fl), 
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Eq. (4.10), is reproduced. This operation requires 
evaluation of the integrals 

ll(r, rtf, Il, v) = r G(r - r', fl)G(r' - rtf, v) dr' (5.1) JJ) 
and 

l2(r, n, fl, v) = L G(r - r', fl)R .. (v, r') dr'. (5.2) 

It is easily shown that the above integrals can be 
expressed in terms of G(r, fl) and the elements of the 
basis {Rn(v, r)}. The procedure is classic. To evaluate 
ll(r, r", fl, v) we write the equations satisfied by 
G(r' - r", v) and G(r, -r', fl), considered as func­
tions ofr': 

(-V"2 + fl-2)G(r - r', fl) = b(r - r'), (5.3) 

(-V"2 + v-2)G(r' - r", v) = b(r' - r"). (5.4) 

Multiplying the first equation by G(r' - r", v), the 
second by G(r - r', fl), subtracting, integrating over 
all r' ED, and applying Green's theorem leads to 

(fl- 2 - v-2)II(r, r", fl' v) = G(r - r", v) 

- G(r - r", fl) + W(r, r", v, fl), (5.5) 
where 

W(r, r", v, fl) 

= r [G(r' - r", v) ~ G(r - r', fl) 
Ji> on' 

- G(r - r', fl) 0:' G(r' - rTf, v)] dS'. (5.6) 

Since rand r" are interior points of D, while the 
integration in Eq. (5.6) is over the surface, we note 
that 

(_V'2 + fl-2)W(r, r", v, fl) = 0 (5.7) 
and 

(_V'''2 + v-2)W(r, r", v, fl) = O. (5.8) 

Furthermore, G(r - r', fl) has an integrable singu­
larity, so that W(r, r", v, fl) is finite. Since G(r, fl) is 
clearly unchanged by an integral number of rotations 
of the coordinate axes, it follows that W(r, r", v, fl) 
belongs to the restricted null spaces of the operators 
in Eqs. (5.7) and (5.8). Thus we can write 

W(r, r", v, fl) = ! Wnm(v, fl)R~(v, r")Rm(fl, r), (5.9) 
n,m 

where the wnm(v, fl) are an appropriate set of co­
efficients. [The use of the complex-conjugate basis 
element R~(v, r) rather than Rn(v, r) itself is for later 
convenience; for the standard bases, {R~(v, r)} is at 
most a rearrangement of {Rn(v, r)}, and in the general 
case it is an alternative basis.] It follows from Eq. (5.6) 
that W(r, rn, v, fl) = - W(r", r, fl' v). This result, 

together with the fact that W(r, r", v, fl) is real, 
implies that 

W~m(V, fl) = -Wmn(fl, v). (5.10) 

Since ll(r, r", v, fl) is bounded as fl---* v, we deduce 
from Eq. (5.5) that W(r, r", v, v) = 0, which implies 
that 

(5.11) 

These last two results are independent of the domain 
D and basis {Rn(v, r)}. Finally, by substituting 
Eq. (5.9) into Eq. (5.5), we obtain 

ll(r, r", fl' v) 

= ~ G(r - r", v) - G(r - r",fl) 
2 2 { 

v - fl 

+ ! wnm(v, fl)R~(v, r")Rm(fl, r)}. (5.12) 
nm 

An analogous argument leads to a representation 
for 12(r, n, fl' v): 

l2(r, n, fl' v) 

v
2

fl2 { } = -2--2 RnCv, r) - ! qnm(v, fl)Rm(fl, r). (5.13) 
v - fl m 

Here the coefficients qnm(v, fl) are defined by the ex­
pansion [cf. Eqs. (5.6) and (5.9)]: 

! qnm(v, fl)Rm(fl, r) 
m 

=f [G(r - r', fl).E.. Rn(v, r') 
D on' 

- RnCv, r') 0:' G(r - r', fl)] dS'. (5.14) 

Since 12(r, n, v, v) < 00, it follows from Eq. (5.13) 
that 

(5.15) 

independent of D and the choice of basis. Since the 
quantities in wavy brackets in Eqs. (5.12) and (5.13) 
vanish for v = fl' the factor v2p,2f(V2 - #2) can be 
replaced, whenever convenient, by c-lj(v, #). 

The above representations of ll(r, r", fl' v) and 
12(r, n, fl, v) exhibit the most general replication 
property of the kernel G(r - r', fl); namely, when 
G(r' - r", v), or any element of a basis {Rn(v, r')}, is 
multiplied by G(r - r', fl) and the result integrated 
over all r' ED, only linear combinations of the same 
functions are produced. The one-dimensional replica­
tion properties noted by Case and Zweifel4 and the 
recent results of Williams8 are special cases of the 
above. 

At this point it is possible to state a criterion for a 
basis {Rn(v, r)} to be sufficiently complete: since the 
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integral ll(r, r", fl' v) arises from the source term in 
Eq. (4.11), only 12(r, n, fl, v) occurs in a source-free 
problem. Thus, if S(r) == 0, a prospective basis is 
sufficiently complete if the integral 12(r, n, fl, v) can be 
represented as in Eq. (5.13) for each value of n. If 
sources are present, we may require in addition that 
the integral ll(r, r", fl, v) be representable as in 
Eq. (5.12), although it is not difficult to show [cf. 
Eq. (5.18) below] that it is sufficient for Eq. (S.12) 
to hold after multiplication by SerIf) and integration 
over all r" E D. 

By substituting per) from Eq. (4.11) into Eq. (2.9) 
and using the above results and the representation of 
unity given in Eq. (3.20), we obtain 

F(r,fl) = ig(e, v)!(v, fl)(fnS(r')G(r - r', v) dr')~~ 

+ ~ iAn(v)!(v, fl)Rn(v, r) dv 

-~ {~ i An(v)!(v, fl)qnm(v, fl) dv 

- ~ fg(e, v)!(v, ,u)wnm(v, ,u)Sn(v) d~}Rm(,u, r), 
n v V 

(5.16) 
where 

Siv) = fnS(r")R!(v, r") dr". (5.17) 

The first two terms on the right-hand side ofEq. (5.16) 
are identical to the original F(r, ,u), Eq. (4.10). Thus 
F(r, fl) will reproduce itself if the An(v) can be chosen 
to make the final term vanish. Since the Rm(,u, r) are 
linearly independent, this requires that 

~ i An(v)!(v, ,u)qnm(v,,u) dv 

= ~ fg(e, v)!(v, ,u)wnm(v, ,u)Sn(v) d~, all m. 
n v V 

(5.18) 

The nature of this equation becomes more evident if 
the discrete and continuum terms are written out 
separately and the explicit form of I(v,,u) is sub­
stituted from Eq. (3.8). We denote the (known) right­
hand side of Eq. (5.18) by fl2Sm(,u), i.e., we put 

- 1 '" f dv Sm(,u) = "2 ~ gee, v)!(v, fl)Wnm(v, ,u)Sn(v) -;: . 
,u n v V 

With these devices, Eq. (S.18) becomes 

A(,u)Am(,u) + e L (1 V2q2nm(V, ;) An(v) dv 
n Jo v -,u 

= S ( ) - ~ A ( )(ev~qnm(vo, ,u») all m 
m ,u ~ n Vo 2 2' , 

n Vo - ,u 

(5.19) 

(S.20a) 

which is seen to be a coupled system of singular 
integral equations for the An(v). 

At a later stage in the analysis, it may be convenient 
to regard Eq. (S.20a) as an equation for a set of 
modified expansion coefficients 

A~(v) = M(v) . Aiv), (5.21) 

where the modifying factor M(v) is a (known) con­
tinuous function to be chosen judiciously later. By 
multiplying and dividing the terms of Eq. (S.20a) by 
M(v), we obtain 

A(,u)A~(,u) + e L (l~ M(/-!-) qnm(v, fl)A~(v) dv 
n Jo v -,u M(v) 

= M(,u)[Sm(,u) - L A~(vo) (ev~q2nm(vo; ,u») J, all m. 
n M(vo) Vo - fl 

(5.20b) 

As shown by Vekua,lo the general procedure for 
solving a system of singular integral equations such 
as Eq. (S.20b) consists of first writing the kernels as 
the sum of a dominant singular part and a Fredholm 
part, and then using complex variable methods to 
invert the dominant part. This leads to a system of 
coupled Fredholm equations for the unknown 
quantities. Several simplifications occur for the present 
problem. To isolate the dominant part of Eq. (S.20b), 
we expand the singular term in partial fractions 

v
2 

= !(_1_ + _1_) (5.22) 
v2 - ,u2 2 v - ,u v + fl ' 

and introduce the functions 

Hnm(v, fl) == ([M(fl)!M(v)]qnm(v, fl) - 0nm}!(v - fl)· 

(S.23) 

Using these devices in Eq. (S.20b) and recalling that 
qnm(v, v) = onm, we obtain 

A(,u)A~(,u) + £. e_v_ A~(v) dv = <Pm(,u), all m, 
2 Jo v - fl 

(5.24) 
where 

<Pm(,u) = M(,u){Sm(,u) - LA~(vo)(ev~q2nm(vo~,u»)} 
n M(vo) Vo - ,u 

_ £. L (1 v[2"Hnm(v,,u) + Onm] A~(v) dv. 
2 n Jo v + fl 

(5.25) 

Thus the equations for A~(v) are seen to be coupled 
only through the Fredholm parts in the <Pm(,u), while 
the dominant parts of the equations, as represented by 

10 N. P. Vekua, Systems of Singular Integral Equations (P. Noord­
hoff, Groningen, The Netherlands, 1967). 
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the left-hand side ofEq. (5.24), are uncoupled. Further­
more, the dominant part is the same for each m, and is 
independent of the domain D and the choice of basis 
{Rn('" r)}. 

In order to convert the singular equations to Fred­
holm equations, we temporarily consider the functions 
<l>mCu) to be known and "solve" Eq. (5.24) by the 
standard methods of Muskhelishvili9 (or equivalently, 
by the "half-range orthogonality" of Kuseer et al. ll). 
Since the left-hand side of this equation is independent 
of m, D, and the choice of basis, it is the same as in 
the equations obtained by Mitsis for the one-dimen­
sional criticality problems, and his solution can be 
applied here. (See Ref. 3 for details.) The solution of 
Eq. (5.24) involves the functions 

X(z) = exp [- ~L1g(C,,u)( 1 + 1 ~:2) In(,u - Z)d,u] 

(5.26) 
and 

y(v) = icvX-(v)/(J.(v) - t1Ticv), (5.27) 

where 
X~",) = lim XCv ± iE:). (5.28) 

..... 0 

In particular, a solution exists only if <l>m(u) satisfies 
the condition 

f1y(,u)<I>m(,u) d,u = 0, all m. (S.29) 
.10 

If this condition is satisfied, the "solution" is given by 

A;"(,u) = A(,u)g(c, ,u)<I>m(,u) 

_ 1 (1 y(v) <l>m{:") dv. 
X-(,u)[J.(,u) + l1Tic,u] Jo v - ,u 

(S.30) 

Since <l>m(,u) actually involves the unknown functions, 
Eq. (5.30) is a system of Fredholm equations for the 
A;"(,u). Both this equation and the constraint, Eq. 
(5.29), can be put in more transparent form by 
substituting <l>m(,u) from Eq. (5.25). The results can 
be expressed compactly by introducing the integral 
operators [defined on an arbitrary function h(,u)] 

T1[h(,u)} == J.(,u)g(c, ,u)h(,u) 

_ 1 e y(v') h(",') dv' 
X-(,u)[A(,u) +~1Tic,u] Jo v' - ,u 

(5.31) 

and 

11 I. Ku~cer, N. J. McCormick, and G. C. Summerfield, Ann. 
Phys. (N.Y.) 30, 411 (1964). 

With this notation, Eq. (5.30) becomes 

A;"(,u) + ~ ~ eKmn(,u, v)A~(v) dv 
2 n Jo 
.= S;"(,u) - ~ BmnC,u)A~(vo), all m, (5.33) 

n 
where 

K ( ) - 7' [2VH nm(v,,u) + ~nmJ mn ,u, v - VII , 
v+,u 

B () = cv~ 1', [M(,u)qnm(vo,,u)] 
mn,u M()1 22' Vo '110 - ,u 

(5.34) 

S;"(,u) = TI[M(,u)Sm(,u)]. 

Similarly, the constraint, Eq. (5.29), becomes 

~ ~ (\mnCv)A~(v) dv + I bmnA~(vo) = s;", all m, 
2 n Jo n 

(5.3S) 
where 

k () - 7' [2vHnm(V,,u) + ~nmJ mn" - "'~2 , 
v+,u 

b = cv~ r.[M(,u)qnm(Vo,,u)] 
non M()2 22' 

Vo '110 - ,u 

(5.36) 

s;" = T2[M(,u)Sm(,u)] . 

Since M(,u) is a continuous function of ,u, since 
Rn(,u, r) is a continuous function of ,u-2, and since 
12(r, n,,u, v) is bounded for a finite domain D, it 
follows from Eqs. (5.13) and (5.23) that the Hnm(v,,u) 
are bounded as ,u -+ v. It is shown in Appendix B 
that the operator T2 is bounded, and thus each of the 
kernels Kmn(,u, v) is bounded (in the sense of the La 
norm); thus Eq. (S.33) is a Fredholm equation, as 
asserted above. 

Since many choices of basis {Rm(,u, r)} are possible 
[each leading to different sets of functions qnm(v, ,u) 
and Hnm(v, ,u)], and since M(,u) can be chosen 
arbitrarily, it appears that the construction of a purely 
mathematical proof of existence of a solution of Eqs. 
(5.33) and (5.35) would be very difficult. However, 
the existence of a solution can be made highly plausible 
on physical grounds: since Eq. (5.33) is a Fredholm 
equation, it is solvable unless the corresponding 
adjoint homogeneous equation has a nontrivial 
solution. But according to the Fredholm theorems, 
this is possible only if the homogeneous form of Eq. 
(5.33), i.e., (S;" = 0) itself has a nontrivial solution. 
Since such a solution is physically possible only if the 
system is critical, Eq. (5.33) should be solvable for any 
subcritical system. 

The coefficients A~(,u) must be determined by solving 
Eq. (5.33) subject to the constraint, (5.35). The 
constraint serves to determine the discrete coefficients 
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A~(vo), or in the source-free problem (s~ = 0) it leads 
to an exact criticality condition. The procedure will 
be clarified through examples in later sections. 

6. CALCULATION OF THE KERNELS 

We note that finding closed-form expressions for the 
kernels from Eqs. (5.34) and (5.36) is in &eneral a 
difficult task, since the application of TI and T2 
requires the evaluation of integrals of the form n y(ft)h(ft) dft, where heft) is some complicated 
function of ft. While these integrals in general must be 
evaluated numerically, an important exception occurs 
if the required heft) satisfies the following conditions: 

(a) With ft replaced by a complex variable z, h(z) 
is a meromorphic function and none of its poles lie 
in the interval (0, 1]. 

(b) h(z) may have a pole at z = 0, and for z -+ 00, 
h(z) -+ h( 00) < 00. 
It is shown in Appendix B that, for such functions 
heft), the required integrals can be evaluated by 
contour integration, yielding 

Tl[h(ft)] 

= (1 - c)(v~ - ft2)g(C, ft)X( -ft) 

x {X(O)/ft· Res h(O) + t ftX~j;j Res h(Zj)} 

and 

T2[h(ft)] = ! X(Zj) Res h(zj) 
j 

(6.1) 

+ X(O) Res h(O) - h( 00). (6.2) 

Here the Zj are the poles of h(z), and "Res" denotes 
the residue. Numerical values of X( - ft) have been 
tabulated by Kowalska.12 

When the above formulas apply, analytical expres­
sions can be obtained for the kernels of Eqs. (5.33) 
and (5.35). It is sometimes possible to arrange this 
fortunate circumstance by making a judicious choice 
of M(ft); in other cases it will be necessary to resort to 
numerical computation. 

7. EXAMPLES: THE ONE-DIMENSIONAL 
CRITICAL PROBLEMS 

As both a test of the above formalism and an 
illustration of how the various quantities appearing 
in Eqs. (5.33) and (5.35) are evaluated for specific 
problems, it will be shown that when these equations 
are specialized to the one-dimensional critical prob­
lems, they reduce to the equations obtained by Mitsis. 
Techniques for solving Eqs. (5.33) and (5.35) will be 
discussed in a later section. 

12 K. Kowalska. Tables of the Functions X(c. -v) and X±(c" c.) 
(Report No. 630/IX-A/PR. Institute of Nuclear Research. Warsaw. 
1965). 

The Critical Slab 

Consider a bare, source-free slab of half-thickness 
h. Since the neutron density must be an even function 
of x, the restricted null space for this problem is the 
set of all even solutions of 

( 
d2 1 ) 

- -2 + 2 R(v, x) = O. 
dx v 

(7.1) 

Clearly, this set is spanned by the single function 

R1(v, x) = cosh x/v (7.2) 

and thus the neutron density has the representation 
[cf. Eq. (4.11)]: 

p(x) = A(vo) cosh ~ + eA(v) cosh ~ dv, (7.3) 
'1'0 Jo v 

where the coefficients are to be determined. As a first 
step, we find qu(v, ft) by evaluating the integral 
12(x, 1, ft, v) [Eq. (5.2)]: 

12(x,l,ft,v) 

= (b I:!:. exp (_ Ix - XII) cosh ~ dx' 
J-b 2 ft v 

V
2
ft2 { X I [ b ft. bJ X} = -2--2 cosh - - e-b!l cosh - + - smh - cosh - . 

v -ft v v v v ft 

(7.4) 
This result is of the form [cf. Eq. (5.13)]: 

V
2ft2 

12(x, 1,ft, v) = -2--2 {Rb,x) - qu(v,ft)R1(ft,x)}, 
v - ft 

(7.5) 
where 

qu(v, ft) = e-bl" [COSh ~ + I:!:. sinh ~J. (7.6) 
v v v 

Equation (7.5) verifies that the single function 
Rl(v, x) does constitute a sufficiently complete basis 
for this problem [cf. the remarks preceding Eq. 
(5.16)]. As in Eq. (5.23), 

Hu(v, ft) = [M(ft) qu(v, ft) - IJ/(v - ft), (7.7) 
M(v) 

where we are free to select M(ft) at will. It is conven­
ient to choose M(ft) so that M(z)qu(v, z) is a mero­
morphic function of z; thus we choose 

(7.8) 

to eliminate the essential singularity of qu(v, z) at 
z = O. The expansion coefficients in Eq. (7.3) will 
then be given by [cf. Eq. (5.21)]: 

A(v) = _1_ A'(v) = e-b1vA'(v) (7.9) 
M(v) 

and A'(v) will be determined from Eq. (5.33). 
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With the above choice of M(p), we find 

M(p')qn(vo, p,) = cosh b/vo + (p,/vo) sinh b/vo (7.10) 
v~ - p,2 v~ - p,2 

and 
2vHl1(v, p,) + 1 

=--
v+p, 

(7.11) 
v+p, 

The former function has poles at p, = ±vo, while the 
latter function has a pole at p, = -v. Both functions 
vanish as p, -+ 00. Thus Eqs. (6.1) and (6.2) apply, 
and we find from Eqs. (5.34) and (5.36) that 

K ll(v,p,) = (v~ - p,2)(1 - c)g(c,p,) 

X X( -p,)X( _v)v[e-2b1v/(v + p,)], 

kll(v) = vX( -v)e-2b1v, 
Bl1(p,) = (v~ - p,2)(1 - c)g(c,p,)X(-p,) (7.12) 

x {cvoX(vo) + cVoX( -yo) e-2bIVO}, 
2(vo - p,) 2(vo + p,) 

bll = tcvo[X( _vo)e-2blvo - X(vo)]· 

Finally, Eqs. (5.33) and (5.35) reduce to 

A'(p,) + ic II Kn(v, p,)A'(v) dv = - Bn(p,)A'(vo) 

(7.13) 
and 

(7.14) 

These equations are identical to those obtained by 
Mitsis who applied Case's singular eigenfunction 
method to the problem. 

The Critical Sphere 

Consider a bare, source-free sphere of radius R. 
The set of all bounded, spherically symmetric solutions 
of the equation 

(- \72 + v-2)R(v, r) = ° (7.15) 

is spanned by the single function 

R ( ) _ . (~) _ sinh r/v 
o v, r - '0 - . 

v r/v 

Thus the neutron density (4.11) is given by 

per) = A(vo)io(~) + llA(v)io(~) elv. 

By use of the addition theorem13 

exp (-Ir - r'I/p,) 

417 Ir - r'l 

(7.16) 

(7.17) 

1 ~ . (r <) (r» () = -2-..c..(21 + 1)/z - kz - PzCcos rr')' (7.18) 
217 p,1=0 P, P, 

13 M. Abramowitz and I. Stegun, Eds., Handbook of Mathematical 
Functions (National Bureau of Standards, Washington, D.C., 1964). 

the integraII2(r, 0, p" v) ofEq. (5.2) is easily evaluated, 
and we find that 

12(r, 0, p" v) = V/~:2 {io C) - qoo(v, p,)io (;) }, 

(7.19) 
where 

qoo(v,p,)=-- vsinh-+p,cosh-. (7.20) e-R11' [ R RJ 
p, v v 

To eliminate the singularity of qoo(v, p,) at p, = 0, we 
choose 

(7.21) 

(the factor of 2 is for convenience), so that the 
coefficients in Eq. (7.17) are given by 

A(v) = (2/v)e-R1VA'(v). (7.22) 

The equations for A'(v) are then found just as for the 
slab problem. J n particular, 

Koo(v, p,) = -(v~ - p,2)(1 - c)g(c, v) 

X X( -p,)X( -v)[ve-2R1v/(v + p,)], 

koo(v) = -vX( _v)e-2R1v, 

Boo(p,) = (v~ - p,2)(1 - c)g(c, p,)X( -p,) (7.23) 

{ 
cvoX(vo) cVoX( -yo) -2RIVO} x - e, 

2(vo - p,) 2(vo + p,) 

boo = -(cvo/2)[X(vo) + e-2RlvoX( -Yo)]· 

Finally, Eqs. (5.33) and (5.35) reduce to 

A'(p,) + ~ rrKoo(p" v)A'(v) elv = -Boo(p,)A'(vo), 
2 Jo 

(7.24) 

£ ekoo(v)A'(v) elv = -booA'(vo). (7.25) 
2 Jo 

These equations are identical to Eqs. (4.6-5) and 
(4.6-6) of Mitsis' paper. 

The Critical Infinite Cylinder 

For this problem, Mitsis did not carry the analysis 
as far as for the slab and sphere,. but stopped with 
equations corresponding to Eqs. (5.24) and (5.25) 
above. To obtain his results, we first note that once 
again the set of all bounded, rotationally invariant 
solutions of Eq. (7.15) is spanned by a single function 

(7.26) 
Thus, 

per) = A(vo)lo(~) + llA(V)lo(;) dv. (7.27) 

The integral 12 (r, 0, p" v) can again be evaluated by 
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using the appropriate addition theorem14 

.L Ko(lr - r'l) 
27T f1, 

=.L i In(r<)Kn(r»ein<8-8'l, (7.28) 
27T n=-oo f1, f1, 

and we find that 

12(r, 0, f1" v) = V2V~~2 {Io(~) - qoo(v, f1,)Io~)}, 
(7.29) 

where 

qoo(v,f1,) = ; Ko(;)I1(;) + ; Io(;)K1(;)' 

(7.30) 

If we choose M(f1,) = 1, so that A(v) = A'(v), then 

Hoo(v, f1,) = [qoo(v, f1,) - 1]/(" - f1,), 

and Eqs. (5.24) and (5.25) become 

A(f1,)A(f1,) + £. [I_v_ A(v) dv = <P(f1,), 
2 Jo v - f1, 

Cl>(f1,) = - (CV~; oo( v, : ») A( yo) 
Vo - f1, 

(7.31 ) 

(7.32) 

_ ~ e v[2vHoo(v, f1,) + 1] A(v) dv. (7.33) 
2 Jo v + f1, 

The functions qoo(v, f1,) and Hoo(v, f1,) defined above are 
identical to the functions q(v, f1,) and H(v, f1,) intro­
duced by Mitsis, and Eqs. (7.32) and (7.33) are 
identical to his Eqs. (5.6-7) and (5.6-7a). 

8. A MORE GENERAL EXAMPLE 

The three simple problems considered above are 
inherently one-dimensional, and in each case only a 
single function R(v, r) is required to span the appro­
priate restricted null space. However, if we consider 
the same simple geometries with non symmetric 
sources or consider more complex geometries, the 
null space is less restricted and more basis elements 
Rn(v, r) are required. 

As an illustration, consider a two- or three-dimen­
sional region D described in a coordinate system 
r = (r1' x). Here r1 denotes one coordinate, and x 
the remaining one or two coordinate(s). Suppose that 
the surface iJ has the simple form'1 = R = constant. 
(For example, D might be an elliptic cylinder or an 
ellipsoid.) In addition, assume that Eq. (3.5) has 

14 A. Erde1yi, Ed., Higher Transcendental Functions (McGraw-Hill 
Book Co., New York, 1953), Vol. 2. 

solutions of the form 

R(v, r) = y(v, '1)W(V, x). (8.1) 

As discussed by Morse and Feshbach,15 it will gen­
erally be possible to find a set of solutions 

Yn(v, '1) Wn(v, x), 

where the Wn(v, x) are a complete set of functions, 
orthogonal with respect to some weight function 
Pw(x), 

f Pw(x)W.lv, x)W!(v, x) dx = bnm · (8.2) 

The Yn(v, '1) are solutions of appropriate Sturm­
Liouville equations and we let Yln(V, '1) denote the 
solutions regular at '1 = 0 and Y2n(v, '1) denote the 
solutions vanishing at '1 = 00. Thus we can take 

(8.3) 

As shown by Morse and Feshbach, the Green's 
function G(r - r', f1,) can be expanded as 

G(r - r', f1,) = - (h~)pw(X')! Wm(,u, x)W!(f1" x') 
hx ", 

X Y1",(f1" r1<)Y2m(f1" r1». (8.4) 
~[Y1m(f1" rD, h",(,u, r1)] 

Here h~ and h~ denote the scale factors of the co­
ordinate system, and ~ denotes the Wronskian. 

For the present problem, the qnm(v, f1,) are most 
easily obtained from the expansion in Eq. (5.14) 
rather than by direct evaluation of 12(r, n, f1" v). In 
the present case, the surface integral corresponds to 
an integral over all x with '1 = R. By substituting the 
above expressions for G(r - r', f1,) and Rn(v, r') into 
Eq. (5.14) and equating coefficients of R",(f1" r), we 
deduce that 

( ) 
_ MY2m(f1" R), Yln(V, R)] 

qnm V,,u -
~[Y2m(f1" R), Ylm(f1" R)] 

. f PW(X)Wn(V, X)W!(f1" x) dx. (8.5) 

A further simplification occurs if Wn (f1" x) is inde­
pendent of f1, (as occurs for the important cases of the 
sphere and infinite cylinder, when the corresponding 
standard bases are used). For these cases the integral 
in Eq. (8.5) reduces to bnm , so that 

( ) 
_ MY2n(,u, R), Yln(V, R)] .t 

qnm v,,u - unm · 
~[Y2n(f1" R), Yln(f1" R)] 

(8.6) 

By substituting the explicit form of Y1n(,u, '1) and 

15 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Co., New York, 1953), Chap. 7. 
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Y2n(ft, r1), we find that for an infinite cylinder 

qnm(V, ft) = {; KneDI~(;) 

-; K~(;)In(;) }~nm' (8.7) 

and for a sphere 

qlm.I'm'(V, ft) = ~: {; kl(;)j~(;) 

- ; k;(;)il(;) }~ll'~mm" (8.8) 

It is easily verified that the results given in Eqs. (7.30) 
and (7.20) are special cases of the above. Similarly, 
by using Eqs. (5.6) and (5.9), it is easily shown that if 
Wn(ft, x) isindependent of ft, the coefficients wnm(v, ft) 
which occur in the source term of Eq. (5.33) are also 
diagonal. In particular, 

Wnm(V, ft) = 2~ {; Kn(;)K~(;) 

-;Kn(;)K~(;)}~nm' (8.9) 

for an infinite cylinder, and 

W1m,I'm'(V,ft) = :~ {;kl(;)k~(;) 

- ; kl(;)k~(~) }~ll'~mm" (8.10) 

for a sphere. 
Since both qnm(v, ft) and wnm(v, ft) are diagonal for 

the sphere and infinite cylinder, the equations for 
A~(v) uncouple, and only the nth mode of the source 
distribution contributes to A~(v). Thus, the solution 
of problems involving nonsymmetric sources in these 
simple geometries is in principle no more difficult 
than the solution of symmetric source problems-one 
has only to solve a separate Fredholm integral 
equation for the coefficient A~(v) of each mode 
present in the source distribution. However, we note 
that in other geometries qnm(v, ft) and wnm(v, ft) are, 
in general, not diagonal and the coefficients A~(v) 
must then be determined by solving a coupled set of 
Fredholm equations. 

9. THE INFINITE MEDIUM 

It is convenient to discuss the case of an infinite 
medium before considering methods to solve Eq. 
(5.33) for the A~{v). Since the functions Rn{v, r) 
may be unbounded as r - 00, some care is required 
to extend the above analysis rigorously to include 

this case. Only an heuristic argument will be given 
here. We consider the effects of extending a finite 
domain D in all directions until it becomes infinite. 
Since both G(r - r', ft) and its normal derivative 
become exponentially small as r' - 00, we deduce 
from Eqs. (5.6) and (5.9) that 

(9.1) 

An inspection of Eq. (5.14) shows that the situation 
is more complex for the qnm{v, ft). As r' becomes 
large for fixed r, the dominant terms in the integrand 
are proportional to exp (v-1 - ft-l)r'; thus 

0, ft < v, 
qnm(v, ft) - (9.2) 

00, ft> v. 

We note in particular that 

qnm(vo, I-t) - O. (9.3) 

What effect the above results will have on the kernels 
of Eq. (5.33) depends on the choice of M(ft) , but the 
essential features of the final solution can be deduced 
for the case M(ft) = 1. Then from Eqs. (9.1), (5.19), 
(5.34), and (5.36) we deduce that S:"'(ft) and s:". both 
go to zero. From Eqs. (9.3), (5.34), and (5.36) it 
follows that Bmn(ft) and bmn both go to zero. Thus, 
Eq. (5.35) reduces to 

E. ! e kmn(v)An{v) dv = O. (9.4) 
2 n Jo 

But from Eqs. (9.2) and (5.36) we conclude that 
kmn(v) - 00; thus Eq. (9.4) can be satisfied only if 
An(v) - 0 (sufficiently fast) for v E (0, 1). This result 
might have been anticipated on physical grounds, 
since past experience with one-dimensional problems 
indicates that a physically meaningful solution per) 
can grow no faster than er/vo for large r. 

From the above discussion (which can be made 
rigorous) it is seen that, for an infinite medium, every 
term in Eqs. (5.33) and (5.35) vanishes, and that 
An(v) == 0 for v E (0, 1). Since the coefficients Bnm(ft) 
and bnm vanish, it is not necessary for the discrete 
coefficients An(vo) to be zero. In fact, they can be 
chosen arbitrarily. The expression for the neutron 
density, Eq. (4.11), thus reduces to 

per) = ig(c, V) (ts(r')G(r - r', v) dr')~: 
+ ! An(vo)Rn(vo, r). (9.5) 

n 

The first term on the right represents neutrons pro­
duced by the source distribution S(r) , while the 
remaining terms can be thought of as the contribution 
due to large sources located at r = 00. It is plausible 
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that the discrete coefficients should be arbitrary, 
since any (physically reasonable) distribution of 
sources at infinity may be specified. In particular, if 
there are no sources at infinity, we require that 

lim per) = o. 

Since this excludes the Rn(vo, r) terms, Eq. (9.5) 
reduces to 

p(r) = ig(C, V) (Ls(rl)G(r - r', v) drl)::. (9.6) 

If we consider the elementary source S(r) = ~(r), then 

per) =ig(c, v)G(r, v) d: . (9.7) 
v v 

Specialization of Eq. (9.7) to one, two, or three 
dimensions leads to expressions for the density due to 
a plane, line, or point source, respectively, in an 
infinite medium. These results have of course been 
obtained by other methods and are well known, but 
the above analysis provides a concise and simultaneous 
derivation of all three. 

10. THE PARTIALLY INFINITE MEDIUM 

Partially infinite media pro blems are typified by the 
one-dimensional Milne problem. In two and three 
dimensions it is easy to conceive of a wealth of 
related problems in which the domain D extends to 
infinity in certain directions, but remains finite in 
others. It appears that a general theory of such prob­
lems will be highly complex, although a few tentative 
ground rules can be given if physically meaningful 
solutions are to be obtained. The continuum co­
efficients An(v) of basis elements Rn(v, r) which grow 
faster than er1vo in a direction in which D is infinite 
should be set equal to zero. The corresponding discrete 
coefficients will be arbitrary; they represent sources at 
infinity. The remaining coefficients will be determined 
by solving Eqs. (5}3) and (5.35). The general theory 
of Sec. 5 has been applied to the familiar one-dimen­
sional Milne problem and application of the above 
ground rules leads directly to the usual solution. l6 

11. CALCULATION OF THE EXPANSION 
COEFFICIENTS 

The expansion coefficients An(v) which appear in the 
representation of per) in Eq. (4.11) must be deter­
mined either by solving the singular equation (5.24) 
directly or by solving the equivalent Fredholm 
equations (5.33) and (5.35). It was shown in Sec. 9 
that, for the infinite medium, the An(v) vanish for 

16 s. I. Schreiner, Dept. of Nuclear Engineering, University of 
Washington, private communication, 1968. 

v E (0, 1). Thus, if the domain D is large, the contri­
bution of the continuum An(v) terms to per) should be 
small, and an approximate calculation will suffice. 

For numerical calculations, the expansion of per) 
must be truncated to a finite number (say N) of 
elements of the basis {Rn(v, r)}. In this case, it is con­
venient to rewrite Eqs. (5.33) and (5.35) in matrix 
notation as 

A'(p,) + (cj2)KA'(p,) + BA'(VO) = S'(p,) (11.1) 
and 

(cj2)kA'(p,) + bA'(vo) = S'. (11.2) 

Here, A'(p,) and A'(vo) are (N x 1) column vectors, 
B(p,) and bare (N X N) matrices, and K and k are 
(N X N) matrix integral operators. 

If b is invertible, a formal solution of Eqs. (11.1) 
and (11.2) can be obtained by first solving Eq. (11.2) 
for A'(VO): 

A'(VO) = b-l[S' - (ej2)kA'(p,)] (11.3) 

and then substituting the result into Eq. (11.1) and 
solving for A'(p,): 

A'(p,) = [/ - (ej2)(B(p,)b-1k - K)]-l 

X [S'(p,) - B(p,)b-1S' ]. (11.4) 
If 

jjB(p,)b-1k - Kjj < 2je, (11.5) 

the inverse is defined by its Neumann series expansion 
and Eq. (11.4) gives a valid solution for A' (p,). When 
specialized to the critical slab and sphere problems, 
this algorithm reduces to the iterative scheme used 
with considerable succeSf by Mitsis. The approach will 
only be successful if Eq. (11.5) holds. As shown in 
Sec. 7 above, the choice of M(p,) most convenient for 
evaluating the kernels of Eq. (5.33) for the slab and 
sphere leads to kernels which decrease as e-2R1v as the 
size of ~he body increases. Thus, for these simple 
geometnes, Eq. (11.5) is satisfied for sufficiently large 
bodies. Unfortunately, there is no obvious assurance 
that this will be the case for more complex geometries; 
while physical intuition makes the solvability of 
Eqs. (11.1) and (11.2) highly plausible, it does not 
imply that the solution is obtainable as a Neumann 
series. If Eq. (11.5) is not satisfied, it should still be 
possible to find solutions of Eqs. (11.1) and (11.2) 
by discrete ordinates methods. 

As an alternative approach, it might be possible to 
obtain the An(P,) directly from the singular equation 
(5.24) by extending the method of Bareiss and Neu­
man.l7 

.17 E. H. Bareiss and C. P. Neuman, "Singular Integrals and 
Smgular Integral Equations with a Cauchy Kernel and the Method 
of Symmetric Paring," Report No. ANL-6988, Argonne National 
Laboratory, Argonne, Illinois, 1965. 
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Considerable work will be required to prove rigor­
ously the convergence of the various approximation 
methods outlined above and to determine the most 
efficient way of evaluating the An(fl). 

12. CRITICALITY PROBLEMS 

When no sources are present in D, it is more 
convenient to solve Eq. (11.1) for A'(fl); 

A'(fl) = - [I + (c/2)K]-lB(fl)A'(vo) (12.1) 

and then substitute the result into Eq. (11.2) to obtain 
the (purely algebraic) equation 

{b - (c/2)k[1 + (c/2)K]-lB(fl)}A'(vo) = O. (12.2) 

Clearly, a nontrivial solution is possible only if 

det {b - (c/2)k[1 + (C/2)K]-lB(fl)) = O. (12.3) 

This is the exact criticality condition, implicitly 
relating the dimensions of the system to c. If IIKII < 
2/c, the inverse in Eq. (12.3) can be expanded in its 
Neumann series; in particular, if IIKII «2/c, we put 
[I + (c/2)K]-1 ,...., I; then Eq. (12.3) reduces to 

det [b - (c/2)kB(fl)] = O. (12.4) 

For the special cases of the slab and sphere, this ex­
pression reduces to the "first order" results of Mitsis. 
Better approximations can be obtained by retaining 
more terms in the expansion of the inverse. 

13. SUMMARY AND DISCUSSION OF 
RESULTS 

The main result of this paper is the representation 
of the neutron density per) given by Eq. (4.11). The 
technique for obtaining the expansion coefficients 
An(v) in this representation has been illustrated above, 
but a brief summary will be given here. First, a co­
ordinate system and a prospective basis must be 
selected. Considerable freedom may be exercised in 
making the selection, although it will be convenient, 
when possible, to choose the coordinates and basis 
so the boundary b and the source distribution S(r) 
have simple representations. The qnm(v, fl) and 
wnm(v, fl) must then be obtained either (as in Sec. 7) 
by evaluating ll(r, r", fl, v) and 12(r, n, fl, v) and 
expressing the results in the form of Eqs. (5.12) and 
(5.13) or (as in Sec. 8) by evaluating the surface 
integrals in Eqs. (5.6) and (5.14). These representa­
tions are possible if the prospective basis is sufficiently 
complete. The An(v) must then be evaluated either by 
solving the singular equation (5.24) numerically or 
by solving the equivalent Fredholm equations (5.33) 
and (5.35). If the latter approach is chosen, M(fl) 
should, if possible, be chosen so the arguments of the 

operators Tl and T2 in Eqs. (5.34) and (5.36) satisfy 
the criteria of Sec. 6. This will facilitate evaluation of 
the kernels in Eqs. (5.33) and (5.35). Methods for 
solving these equations have been discussed in Sec. 12. 
Finally, per) is obtained by returning to Eq. (4.11) 
and substituting the evaluated coefficients. 

Since, in general, the expansion coefficients can not 
be evaluated exactly, the formalism given above does 
not provide a complete solution of the problem. 
However, as in Case's method, the resulting repre­
sentation of per) affords considerable insight into the 
structure of the solution, and the equations for the 
coefficients An(v) readily lend themselves to systematic 
approximations-a feature not exhibited by the 
original equation [Eq. (2.1)] for per). 

The representation of per) has a number of striking 
features which deserve comment. First, the basic 
structure of the solution, a superposition of discrete 
modes (v = '110) and continuum modes [v E (0,1)], 
involving solutions of the Helmholtz equation, is 
seen to be the same for all problems of interest in one, 
two, or three dimensions, regardless of the shape of 
D or the choice of coordinate system and basis. This 
wide range of possible representations, corresponding 
to different choices of {Rn(v, r)}, is reminiscent of the 
many possible representations of the wavefunction in 
quantum mechanics. 

In the present paper, only representations involving 
countable bases have been considered. Since the 
standard bases can be used to treat any problem of 
interest, this restriction does not imply any loss of 
generality; however, it may sometimes be more 
convenient to represent per) in terms of a continuum 
basis, such as the one given as an example in Sec. 3. 
All of the above analysis has been extended to admit 
this possibility and these results, as well as others, will 
be reported in a later paper. The primary modification 
necessary when n takes on a continuum of values is 
that the coupled set of Fredholm equations for the 
An(v) becomes a single, multidimensional Fredholm 
equation in the variables v and n. 

In the representation of per), Eq. (4.11), continuum 
modes occur both in the source term and in the term 
involving the Rn(v, r). Since the An(v) vanish for 
'liE (0, 1) in an infinite medium, the latter can be 
thought of as surface modes. Continuum modes are 
thus generated both by sources and by surfaces, and 
far from either, the density is well represented by the 
discrete (v = "0) part ofEq. (4.11). These observations 
show that the results obtained previously for one­
dimensional problems remain valid in the general case. 

Finally, it should be noted that, while the entire 
analysis has been carried out for the transport 
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equation, it is highly plausible that a similar treatment 
will apply to any integral equation whose kernel has an 
integral representation involving the Green's function 
of a simple differential operator. 

ACKNOWLEDGMENT 

It is a pleasure to acknowledge the encouragement 
and helpful criticisms provided by Professor N. J. 
McCormick of the University of Washington Nuclear 
Engineering Department. 

APPENDIX A 

Here we verify a result which was derived formally 
in Sec. 3: 

gee, '1'0) 11 dv 
1 = --2 -/('1'0, #) + gee, '1')/('1', #) "2' (AI) 

'1'0 0 v 

Let A(z) denote the function introduced by Case2 : 

A(z) = 1 - cZil ~ . (A2) 
2 -1# - z 

According to the Plemelj formulas ,9 

A±(v) = lim A(v ± iE) = J.(v) ± t7Ticv, 'liE (0, 1). 
£-+0 

(A3) 
We deduce from Eq. (3.15) that 

A+(v)A-(v) = l/g(e, v), 'liE (0,1), (A4) 

and from Eqs. (3.9) and (3.17) that 

A'(±vo) = ±2/[evog(c, '1'0)]' (A5) 

Furthermore, A(±vo) = 0. Now consider the integral 

_#2 ( dz 

1 = 27Ti Ja Z(Z2 _ #2)A(z) , 
(A6) 

where # E (-1,1) and C = Cl U C2 is the contour 

FIG. I. Contour for evaluation of integral in Eq. (A6). 

shown in Fig. 1. The integral can be evaluated by 
summing the residues at z = ±vo; thus, 

On the other hand, I can be evaluated by adding the 
contributions from various parts of C. As Cl is 
expanded to infinity, its contribution vanishes. The 
contribution from C2 , apart from the six semicircles 
around the poles at # = ° and # = ± 1, is 

12 = L P {I dv (_1 __ 1 ) 
27Ti 11 '1'('1'2 - #2) A-(v) A+(v) 

= c p 2 II dv 
{.t 0 (i - #2)A+(v)A-(v) . 

(A8) 

The contributions from the six semicircles are easily 
evaluated, and their sum is 

Ia = J.(v)J[A+(v)A-(v)] - 1. (A9) 

Equating I [Eq. (A7)] to the sum of 12 and la, and 
using Eq. (A4) , Eq. (AS), and the definition of 
f(v, #), leads directly to Eq. (AI). 

APPENDIX B 

Here we verify the identities given in Sec. 6 for the 
operators Tl and T2 • The procedure is identical to that 
used in Appendix A. 

Let h(z) be a meromorphic function, having no 
poles in (0, 1], which approaches a finite limit h( (0) 
as z -+ 00. To evaluate T2 [h(#)], consider the 
integral 

1 = ~ ( X(z)h(z) dz, 
2m Ja (Bl) 

where C = Co U Cl U C2 is the contour shown in 
Fig. 2. Since X(z) is analytic in the cut plane, we have 

1 = ! X(Zi) . Res h(Zi)' (B2) 
i 

FIG. 2. Contour for evaluation of integral in Eq. (Bl). 
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where the z; are the poles of h(z). On the other hand, where 
I can be evaluated by adding the contributions from G{ft) = (1 y(v)h(v) dv . (B12) the parts of C. As the radius of Co goes to zero, 

10 -+ - X(O) . Res h(O). (B3) 

On C1 , the contribution is 

(B4) 

where the last equation follows from the identity2 

X+(ft) A+(ft) 
--=--
X-(ft) A -(ft) 

(BS) 

and the definition of y{ft). Let C2 be expanded to 
infinity. Since X(z) ,...; liz, clearly 

12 -+ h( (0). (B6) 

Since 1= 10 + II + 12 , the result given in Eq. (6.2) 
for T2 [h{ft)] follows. 

To evaluate T1 [h(ft)], we need only write 

p_,_l_ = lim!(, 1 . +, 1 .) (B7) 
v - ft .->0 2 v - ft + IE V - ft - IE 

Jo v - ft 
But 

Ilg(e, ft)(v~ - ft2)X( -ft)G(ft) II 

~ max Ig(e, ft)(v~ - ft2)X( -ft)1 . IIG(ft)ll, (B13) 

and II G{ft) II can be estimated by using the theorem 
given by Titchmarsh18 concerning the norm of a 
Hilbert transform: If we put 

then 

( ) _ {7TY(V), for v E (0, 1), 
Yl V -

0, otherwise, 

G(ft) = .! foo Yb)h(v) dv , 
7T -00 V - ft 

and according to the theorem 

Thus, 

IIG(ft)112 = L1

IG(ft)1
2 

dft ~ L:IG(ftW dft 

= L:IYl(ft)h(ft) 12 dft· 

(B14) 

(B1S) 

(BI6) 

(BI7) 

and apply the results already obtained for T2 • By 
defining 

To complete the estimate of Tl [h(ft)] , consider the 
remaining term on the right-hand side of Eq. (BII), 

(B8) and use Eq. (3.1S): 

and using Eq. (A4), Eq. (BS), and the identity3 

If[X-(ft)A+(ft)] = gee, ft)(v~ - ft2)(1 - e)X( -ft), 

(B9) 

the result given in Eq. (6.1) is readily obtained. 
To show that Tl is a bounded operator, Eq. (B9) is 

used to rewrite Eq. (S.31) as 

T1 [h(ft)] = A(ft)g(e, ft)h(ft) 

- (1 - e)(v~ - ft2)X( -ft)g(e, ft) 

11 y(v)h(v) dv x . 
o v-ft 

(BlO) 

According to the triangle inequality, 

II T1[h(ft)] II = (fl Tl[h(ft)] 12 dft)! 

~ IlACft)g(e, ft)h(ft) II 

+ 11 - el . Ilg(e, ft)(v~ - ",2)X( -ft)G(ft) II , 

(Bll) 

IIA(ft)g(e, ft)h(ft) II 

( 
(1 A2(ft) )! 

= Jo A2(ft) + (t7Teft)2 gee, ft)h
2
(",) dft 

~ (fg(e, ft)h
2
(ft) dft)! 

~ max [gee, ft)]L Ilh(ft)ll. (B18) 

Combining Eqs. (Bll), (BI3), (BI7), and (BI8) 
yields 

II T1[h(ft)] II ~ {max [g(e,ft)]! + 7T 11 - el 

. max [gee, ft)· (v~ - ft2)X(-",)] 

. max ly(ft)l} IIh(ft)ll. (BI9) 

From the properties of gee, ft) (Ref. 1), X( -ft) 
(Ref. 12), and the definition of y(ft) , it follows that the 
quantity in wavy brackets is finite and thus Tl is a 
bounded operator. 

18 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals 
(Oxford University Press, London, 1937), Theorem 90. 
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The problem of the propagation of electromagnetic waves in a sinusoidally stratified plasma media is 
treated analytically. The propagation characteristics of TE and TM waves are determined, respectively, 
from the characteristic equations of the resultant Mathieu and Hill equations. Detailed dispersion 
characteristics of TE and TM waves in an infinite stratified plasma medium and in waveguides filled 
longitudinally with t!lis stratified dispersion material are given. It is found that, although the stop-band 
and pass-band structures exist for the w-fJ diagrams of both TE and TM waves, detailed dispersion 
properties for TE and TM waves are quite different for most frequency ranges except when [(W/W",,)2 -
1]2» 62, where w is the frequency of the propagating waves, w.o is the average plasma frequency of the 
inhomogeneous plasma medium, and a is the amplitude of the sinusoidally varying term for the electron­
density profile (0 ~ a ~ 1). 

I. INTRODUCTION 

The problem of electromagnetic wave propagation 
in a sinusoidally stratified medium is not only of 
interest from a theoretical point of view but also 
possesses many possible applications. For example, a 
section of waveguide filled with this type of inhomo­
geneous dielectric may be used as a band-pass filter 
in the millimeter-wave or optical region. The use of 
an ultrasonic standing wave as a modulating device 
for certain pressure-sensitive media, such as carbon 
disulfide, pentane, or nitric acid at optical frequencies 
to achieve a sinusoidally varying dielectric medium 
may be proposed.! Other applications of wave 
interactions in periodic media, such as the deflection 
of laser beams,2 the measurement of acoustic properties 
in crystals,S and Cerenkov radiation in periodically 
stratified media,4 can also be found. In recent years, 
the problem of wave propagation in sinusoidally 
stratified dielectric nondispersive media has been 
considered in detail by several authors.5 However, 
the results are not applicable for dispersive media. 

The purpose of this investigation is to consider the 
propagation characteristics of waves in a dispersive 
sinusoidally varying medium. Specifically, the disper­
sive medium is assumed to be an inhomogeneous cold 

• Supported partly by the Office of Naval Research and partly by 
the National Science Foundation. 

1 C. Yeh and Z. A. Kaprielian, "On Inhomogeneously Filled 
Waveguides," USCEC Dept. 84-206, Electrical Engineering Depart­
ment, University of Southern California, Los Angeles, 1963. 

• M. G. Cohn and E. I. Gordon, Bell System Tech. J. 44, 693 
(l965). 

3 H. H. Parker, E. F. Kelly, and D. I. Bulef, App\. Phys. Letters 
S, 7 (1964). 

'K. F. Casey, C. Yeh, and Z. A. Kaprielian, Phys. Rev. 140, 
B768 (1965). 

• T. Tamir, H. C. Wang, and A. A. Oliner, IEEE Trans. Micro­
wave Theory Tech., MT 12, 323 (1964). 

plasma with a sinusoidally varying free electron 
density profile. 

Two types of waves may exist: one with its electric 
vector transverse to the direction of the inhomogeneity, 
called a TE wave, and the other with its magnetic 
vector transverse to the direction of inhomogeneity, 
called a TM wave. Both types of waves will be treated. 
Detailed dispersion characteristics of TE and TM 
waves in an infinite stratified plasma medium and in 
waveguides filled longitudinally with this inhomo­
geneous plasma will be presented. 

It is hoped that these results will be useful in the 
diagnostics of plasmas6 and in the study of wave 
propagation in solids. 7 

II. FORMULATION OF THE PROBLEM 

It is assumed that the inhomogeneous plasma 
medium under consideration fills the entire space and 
possesses a plasma frequency 

(1) 

where z is the axial coordinate, n(z) is the free electron 
density, e is the electron charge, m is the electron 
mass, and eo is the free-space permittivity. 

The source-free vector wave equations in this 
medium are 

v x V x E - kg(e(z)/eo)E = 0, (2) 

V x V x H - Ve(z) x V x H - k~(e(z»)H = 0, 
e(z) eo 

(3) 

6 M. A. Heald and C. B. Wharton, Plasma Diagnostics with 
Microwaves (John Wiley & Sons, Inc., New York, 1965). 

7 L. Brillouin, Wave Propagation in Periodic Structures (Dover 
Publications, Inc., New York, 1953). 

891 
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where E and H are, respectively, the electric and 
magnetic field vectors, k~ = W21'0Eo, and a time 
dependence e-iwt is assumed. 1'0 is the free-space 
permeability. The dielectric permittivity of the 
inhomogeneous cold plasma is related to the plasma 
frequency by the following relation: 

E(Z) = Eo[1 - w;(z)/w2
]. (4) 

It can be shown that all field components in this 
medium can be obtained from the scalar quantities 
<l>(x,y, z) and'Y(x,y, z) as follows l : 

E(m) = V x [<l>(x, y, z)ez], (5) 

H(m) = (-i/wl'o)V x V x [<l>(x, y, z)e z], (6) 

for transverse electric waves, and 

We) = V x ['Y(x, y, z)ez], 

E(e) = (i/WE(Z)V X V x ['Y(x, y, z)ez], 

(7) 

(8) 

for transverse magnetic waves. ez is the unit vector 
in the z direction. Upon substituting (5) into (3) and 
(7) into (4), carrying out the vector operations, and 
separating variables in rectangular coordinates, one 
obtains 

<l>(x, y, z) = (sx) (wy) U ' z, (9) {
sin }{Sin } (1) (2)( ) 

cos cos 

'Y(x, y, z) = {Sin ( X)}{Sin ( )} V(l)·(2)(Z), (10) 
cos p cos qy 

where s, w,p, andq are separation constants. U(l),(2)(Z) 

and V(l),(2)(Z) satisfy, respectively, the differential 
equations 

and 

{~ _ (dECZ))_1 i. + [k~(ECZ)) _ p2 - q2J} dz2 dz E(Z) dz EO 
x V(l),(2)(Z) = O. (12) 

Introducing the dimensionless variable ~ = 7Tz/d, 
where d has the dimension oflength and will be defined 
later, it can be shown that Eqs. (11) and (12) can be 
put into the following form: 

[~ + ;,(~)J W(l),(2)(~) = 0 (13) 
d~2 ' 

where 

(14) 

if 

and 

;'(~) = _1_ {[Elm)" + E'm [El(~)]' 
E2(~) E(~) 

+ :: [ko(E:!») _ p2 _ q2}lm} (16) 

if 
W(l).(2)(~) = E-l(~)V(l),(2)(~). (17) 

The primes indicate the derivative of the function with 
respect to ~. 

III. THE SINUSOIDALLY STRATIFIED 
PLASMA MEDIUM 

If the free electron density distribution is assumed 
to have a sinusoidal stratification as follows: 

( 
27TZ) n(z) = no 1 - c5 cos d ' (18) 

where no is the average electron density, c5 is a known 
constant with 0 ~ c5 ~ 1, and d denotes the period of 
the sinusoidal variation, then the dielectric constant 
of this plasma medium is 

E(~) = EO{ (1 - jo) + ~O c5 cos 2~} (19) 

and 

Substituting Eq. (19) into (14) gives 

;'TEm = (k:dr - (k:dy - (~r _ (W:)2 

+ (k:drc5 cos 2~, (20) 

with 

k~o = W~ol'oEo, 
for the transverse electric wave; substituting Eq. (19) 
into (16) gives 

;,TMm = _ 2(W'PO/W)2c5 cos 2~ 
1 - (w'Po/w)2(1 - c5 cos U) 

3(W'PO/W)2c52 sin2 2~ 

[1- (w'Po/w)2(1- c5cos2~)]2 

+ (k:dy[ 1 - (a;:oy(1 - c5 cos 2~)J 

- (p:y - (q:r (21) 

for the transverse magnetic wave. Since, according to 
Eqs. (20) and (21), ;'TEa) or ;,™a) is an even 
periodic function, it can, therefore, be represented by a 
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Fourier cosine series 
OCJ 

)..TE.™m = O~E.TM + 2 ~O~E.TMCOS 2n~, (22) 
n=1 

where 

OJE = (k:d)2 (k:d)2 C:)2 - (:r (23a) 

oiE = tb(kfJOdj1T)2, (23b) 

(J~E = 0, n ~ 2, (23c) 

and 

(J~M = (k:d) _ (k:d) (P:) (q:) 
- [(1 _IN)! - 1]. (24a) 

OTM = .lb (kfJOd)2 4b
3 

- 2b 
I 2 1T + b2 - 1 ' 

(24b) 

TM (3n + l)bn
+2 - (3n - l)bn 

o = , n ~ 2, 
n b2 _ 1 

(24c) 

with 
b = A-I - A-I (1 - A2)!, (24d) 

A = bj(1 - w2/w!o). (24e) 

It should be noted that the above Fourier series 
representation for the TM case converges absolutely 
when 

o ~ Ib/(1 - w2/w!O) I < 1 

with 0 ~ b ~ 1. 

IV. SOLUTIONS OF HILL'S EQUATION 

Substituting (22) into (13), one obtains 

(25) 

[
d2 OCJ ] d~2 + O~E.TlI1 + 2 n~O~E.TM cos 2n~ W(I).(2)(~) = 0 

(26) 

which is the general form of Hill's equation.8 •9 It is 
known that two types of solutions of Hill's equations 
exist: one called the stable type and the other called 
the unstable type. In order to have propagating waves 
in the z direction, only the stable type is allowed. 

With the help of Floquet's Theorem, 7-9 the solutions 
of Hill's equation can be expressed in the following 
form: 

W(I).(2)m = e±ivS l CnC'II)e±2ins, (27) 
n~OCJ 

where 'II, the characteristic exponent, and Cn('II) are as 
yet unknown. After substituting (27) into (26) and 

8 J. Meixner and F. w. Schafke. Mathieusche Funktionen und 
Sphiiroidfunktionen (Springer-Verlag. Berlin, 1954). 

• P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Co., Inc., New York, 1953). 

simplifying, one obtains the following recursion 
relations: 

m=-oo 

n = ... -2, -1,0,1,2, .. " (28) 

with OTE,TM = OTE,TM. It is understood that 'II = 
-m m 

'jITE and C = CTE when OTE are used while'll = 
'jITlIf and C: = CjM when e~M are used. Equation 
(28) is a set of an infinite number of homogeneous 
linear algebraic equations in Cn • For a nontrivial 
solution to exist the characteristic number'll and the 
coefficients Om must satisfy the characteristic equation 
of the Hill equation9

: 

( OTE.TM)! 
sin2 1T'II = il(O) sin2 ~-- • (29) 

2 2 

il(O) is the determinant of the matrix [M] whose 
elements are 

Mmm = 1, 

Mmn = 4m2 _ OJE,TM' 
m ¥- n. (30) 

The characteristic number 'jI can be obtained from (29). 
Real values of 'jI yield stable solutions to Hill's 

equation, while complex values of'jl produce unstable 
solutions. Physically speaking the stable solutions 
correspond to modulated' propagating waves, and the 
unstable solutions correspond to damped or growing 
waves. For the present problem, the fields for the 
growing waves do not satisfy the radiation condition 
at infinity, hence they must be omitted. 

Numerical computation has been carried out for 
(29). The values for the infinite determinant il(O) 
were obtained by the successive approximation 
method.1° In other words, computations were carried 
out for a 3 x 3 determinant, a 5 x 5 determinant, 
etc., until the desired accuracy was reached. It was 
found (numerically) that the infinite determinant 
converges quite rapidly within the present region of 
interest. For example, for small values of band kfJo , 
such that (j ~ 0.1 and (kfJOdj1T)2 ~ 0.5, at no time 
was any determinant greater than 7 x 7 required to 
achieve an accuracy of three significant figures. For 
large values of (j and kfJo , no determinants of order 
greater than 15 x 15 were required to obtain the 
desired accuracy. 

V. PROPAGATION CHARACTERISTICS OF 
TE WAVES 

Returning now to the problem of obtaining the 
propagation characteristics of waves in a sinusoidally 

10 L. Kantorovich and V. Kry\ov, Approximate Methods of 
Higher Analysis (Interscience Publishers, New York, 1958). 



                                                                                                                                    

894 CASEY, MATTHES, AND YEH 

stratified plasma medium, we note, upon substituting 
Eq. (22) for TE waves into Eq. (13), that the resultant 
differential equation for TE waves is the Mathieu 
equation, a special case of Hill's equation. It is 
customary to express the results of computation for the 
characteristic exponents of Mathieu functions in 
terms of a "stability diagram." 9.11 Figure 1 shows the 
stability diagram which was obtained from previously 
tabulated values for the characteristic exponents of 
Mathieu functions. The unshaded areas are the 
"stable regions" wherein v is purely real; the shaded 
areas are the "unstable regions" wherein v is complex. 

A. Infinite Region Filled With Sinusoidally 
Stratified Plasma 

The transverse electric field components of a TE 
wave in an infinite medium filled with sinusoidally 
stratified plasma can be obtained from Eqs. (5) and 
(6): 

n=-oo 

n=-oo 

where the coefficients C~E can be determined from 
Eq. (28) in terms of ClEo The propagation constant 
{J is related to v by the equation {J = vTT/d. ClE is 
obtained from a normalization condition. All magnetic 
field components may be found from Maxwell's 
equations. 

Unlike the case of a TE wave propagating in an 
infinite homogeneous plasma in which {J is simply 
related to sand w by the following: 

(J2 = W2,to€o(1 - w;/w2
) - (S2 + w2

), (33) 

where w1J is the plasma frequency of the homogeneous 

11 T. Tamir, Math. Computation 16, 100 (1962). 

FIG. I. Stability chart for Mathieu's equation 
from which the propagation characteristics 
of TE waves may be determined. Unstable 
regions are shaded. 

plasma, the propagation constant {J for the inhomo­
geneous case is related to sand w through the stability 
diagram given by Fig. 1. Real values of {J as a function 
of real values of (S2 + w2) for fixed values of <5, kod, 
and k1Jod are shown in Fig. 2. It is recalled that 
complex values of {J indicate the presence of damped 
waves (i.e., nonpropagating waves). sand ware taken 
to be real. The unshaded regions in these figures 
indicate the regions in which {J is real (i.e., regions 
in which propagating waves may exist). Equation (33) 
is also plotted in Fig. 2 with W1J = w1Jo • As one can 
see, the propagation characteristics of waves in the 
inhomogeneous plasma are significantly modified 
from those in the homogeneous plasma. The presence 
of stop-band and pass-band regions in Fig. 2 is 
characteristic of wave propagation in periodic 
structures. 

B. Waveguide Filled Longitudinally With 
Sinusoidally Stratified Plasma 

It is assumed that a rectangular waveguide of 
dimensions hI and h2 is filled completely with an 

3.0 

2.0 

Pdf11 

1.0 

TE WAVE 

8 -0.25 

°0L-L-2~.0~~4.0--L-6L.O~~ 
(s2+w 2 )d 2 /112 

(a) 

2.0 4.0 6.0 
(S2 +w 2 )d 2 /".2 

(b) 

8.0 

FIG. 2. The propagation constant {ldhr as a function of (Sl + 
w") d"ITr" with (kpodITr") = 1.0 and (kodITr)" = 9.0. Stop bands are 
shaded. The dashed line represents the behavior of the propagation 
constant for an equivalent homogeneous plasma medium with 
wp = wOO (TE wave). 
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TE WAVE 

28.0 

26.0 

(

k d ):2.0 I--*--~~--=-"­
-;- 18.0 

1.0 
{3dhr 

(a) 

2.0 0 1.0 2.0 
{3dhr 

(b) 

FlO. 3. Frequency as a function of propagation constant with 
(kp od/1T)2 = 2.0 and (yd/1T)' = 10.0. Stopbands are shaded. Dashed 
line indicates the cutoff frequency for a waveguide filled with an 
equivalent homogeneous plasma medium with wp = wpo (TE wave). 

inhomogeneous plasma medium, which varies sinus­
oidally in the longitudinal direction. The general 
expressions for the transverse electric field components 
of a TE wave are 

E~E = I I I - CJE r1T 
m~Ir~l n~oo h2 

X cos m1TX sin r1Ty e i (Y+2n) ... /d (34) 
hI h2 ' 

E;'E = I I I C~E ~ 
m~Ir~ln~-oo hI 

X sin m1TX cos r1TY ei(Y+2n ) ... /d (35) 
hI h2 ' 

with f3 = v1T/d. The C!E are arbitrary constants and 
C~E can be determined from Eq. (28) in terms of 
C;;E. Expressions for the magnetic field components 
can easily be derived from Maxwell's equations. 

The dispersion relations expressed in terms of the 
w-f3 diagrams can be found from Fig. 1 for fixed 
values of <5, kpod, and S2 + w2, where 

(yTE)2 = S2 + w2 = (::r + G:r (36) 

TE WAVE 

28.0 

26.0 

22.0 

(
k d)2 7 18.0 r--:;x.---,*,""" 

14.0 

1.0 

{3dhr 
(a) 

2.0 0 1.0 2.0 
{3d/1r 

(b) 

FIG. 4. Frequency as a function of propagation constant with 
(kp od/1T)2 = 5.0 and (yd/1T)2 = 10.0. Stop bands are shaded. 
Dashed line indicates the cutoff frequency for a waveguide filled 
with an equivalent homogeneous plasma medium with wp = OJ". 
(:rE wave). 

The w-f3 diagrams are given for <5 = 0.1, 1.0, 
(k pod/1T)2 = 2.0, 5.0 and (S2 + w2)(d/1T)2 = 5.0, 10.0 
in Figs. 3 and 4. The pass-band and stop-band char­
acteristics can clearly be seen. Furthermore, an in­
crease in <5 results in a corresponding increase in the 
bandwidth of the stop bands. Also shown in these 
figures is the cutoff frequency for an identical wave­
guide filled with homogeneous plasma which has a 
plasma frequency equal to Wpo' It is noted that the 
cutoff frequency for the equivalent homogeneous case 
is above the cutoff frequency of the first pass band for 
the inhomogeneous case. 

VI. PROPAGATION CHARACTERISTICS OF 
TM WAVES 

Unlike the TE case, the TM case requires the 
solution of the more complex Hill equation. It is more 
straightforward to obtain the propagation char­
acteristics of TM waves directly from Eq. (29) than to 
use the stability diagram, as described earlier for TE 
waves. 

It is recalled that, in order that Eq. (12) for TM 
waves may be put in the form of the Hill equation, a 
very important limitation on the ratio w/w po must be 
satisfied, i.e., from Eq. (25), 

0< 1 <! 
- 11 - w2/w;,1 <5 

(37) 

with 0 ~ <5 ~ 1. A sketch of the above relation is 
given in Fig. 5. The shaded area indicates the forbidden 
region in which the relation (37) is not satisfied. It was 
found numerically that, for moderate values of 
(p2 + q2)(d/1T)2, the lower cutoff frequency of the first 
pass band occurs at frequencies considerably above 
wpo· 

A. Infinite Region Filled With Sinusoidally 
Stratified Plasma 

The transverse magnetic-field components of a TM 
wave in an infinite medium filled with sinusoidally 
stratified plasma can be obtained from Eqs. (7) 

FIG. S. A plot ofEq. (37). I 8 I 
Shaded region indicates the 1_ ( .. "'po)" 
region in which the con-
vergence of the series expan-
sion breaks down with 1.0 

1151 ~ 1.0. 

..!!!.. 
"po 

2.0 3.0 
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and (8): 

n=-oo 

[ (
w )2( 27TZ)J! x 1 - ;0 1 - 15 cos d ' (38) 

(39) 

with f3 = v7T/d. The coefficients CJM can be determined 
from Eq. (28) in terms of ClM. The electric field 
components can be found from Maxwell's equations. 

Real values of f3 as a function of real values of 
(p2 + q2) for fixed values of 15, kod, and kpod are shown 
in Fig. 6. Again, the pass-band and stop-band features 
are apparent in this figure. Results are rather similar 
to those given in Fig. 2 for TE wave, although 
quantitatively the results are different. 

B. Waveguide Filled Longitudinally With 
Sinusoidally Stratified Plasma 

The general expressions for the transverse magnetic­
field components of a TM wave in a rectangular 
waveguide of dimensions hI and h2 filled longitudinally 
with an inhomogeneous plasma medium are 

0000 00 r 
HTM '" '" '" C'fM . m7TX 7Ty -(v+2nhTz/d = k k k n S10 -- cos -- e 

'" m=lr=ln=-oo hI h2 

r7T[ (W )2( 27TZ)J! x h; 1 - ;0 1 - 15 cos if ' (40) 

0000 00 r 
H TlI1 "''''' CTM m7TX. 7Ty i(,,+2rd"z/d = k k k n cos -- S10 -- e 

!J m=lr=l n=-oo hI h2 

x (- ::) [1 - (W;or (1 - 15 cos 2;Z) y, 
(41) 

where the coefficients CJM can be determined from 

3.0 

2.0 

Pdt." 

1.0 

(kpod;'r)2. 1.0 

(kod/~2 • 5.0 

TM WAVE 

1.0 2.0 3.0 4.0 0 
(p2 + q2)d2/"z 

(0) 

(kpod/'II')2.5.0 

(k.,d/.,,) 2 • 9.0 

1.0 2.0 3.0 4.0 
(p2+q 2)dz/."z 

(b) 

FIG. 6. The/ropagation constant (Jd/'TT as a function of (p' + 
q') d2/'TT2 with = 0.25. Stop bands are shaded. The dashed line 
represents the behavior of the propagation constant for an equiv­
alent homogeneous plasma medium with w" = wpo (TM wave). 

TM WAVE 

24.0 

20.0 

16.0 

(k d)' 7 12.0 

8.0 

4.0 
0 1.0 2.0 0 1.0 2.0 

Pdt." Pdt ... 
(0) (b) 

FIG. 7. Frequency as a function of propagation constant with 
(k"od/'TT)S = 2.0 and (yd/'TT)' = 5.0. Stop bands are shaded. Dashed 
line indicates the cutoff frequency for a waveguide filIed with an 
equivalent homogeneous plasma with w" = w"O (TM wave). 

Eq. (28) in terms ofC:M. The electric-field components 
can be found from Maxwell's equations. 

Solving Eq. (29) for fixed values of 15, kpod, and 
(p2 + q2), where 

(yTM)2 = p2 + q2 = (:~r + G~r 
yields the propagation constant f3 as a function of W 
as shown in Figs. 7 and 8. Again, the propagation 
characteristics of TM and TE waves are similar. 
However, the bandwidths, center frequencies of the 
stop bands, and the waveguide cutoff frequencies 
vary considerably for the two modes. Also noted 
from the definitions (23) and (24) is that O!M ~ O!E 
provided that 

/)2 
------ --+ O. 
[(W/Wpo)2 - 1]2 

In other words, if [(W/W p O)2 - 1]2» 152, the propaga­
tion characteristics of TE and TM waves are almost 
the same. Otherwise, the results for TE and TM waves 
will be quite different. For example, in the lower 
frequency ranges, the bandwidths of the stop bands 
for the TM waves are greater than the bandwidths of 

TM WAVE 
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(
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FIG. 8. Frequency as a function of propagation constant with 
(kpod/'TT)' = 2.0 and (yd/'TT)S = to.O. Stop bands are shaded. Dashed 
line indicates the cutoff frequency for a waveguide filled with an 
equivalent homogeneous plasma with w" = wpo (TM wave). 
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the corresponding stop bands for the TE waves, and 
the waveguide cutoff frequencies for the TM waves 
are lower than those of the TE waves. (Compare Fig. 
8 with Fig. 3.) As the frequency is increased beyond 
the second pass band, the bandwidths of the stop 
bands are approximately the same. 

The w-{3 diagrams given by Figs. 3 and 4 for TE 
waves and Figs. 7 and 8 for TM waves are also 
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applicable for waveguides of arbitrary cross-section. 
For example, in a circular waveguide of radius Po, 
yTE,TM is given by r~~,TM/ Po, where r~~,TM are, 
respectively, the rth roots of the equations 

J;,.(r;.~) = 0 
and 
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1. INTRODUCTION 

Recent developments indicate that unitary infinite­
dimensional representations of certain noncompact 
Lie groups may be usefully employed in describing the 
physics of elementary particles.1 For such purposes, 
the primary need is to have the relevant representations 
in as explicit and manageable a form as possible. 

In setting up the representations of a semisimple 
noncompact Lie group, one has to decide from 
physical considerations which complete commuting 
set of operators is to be used to provide labels for the 
various states that ,appear in the representation. In 
some cases, this set will be associated with a compact 
subgroup of the original group, in others with a 
noncompact one. Even when a complete commuting 
set has been found, the problem of finding the possible 
eigenvalues of the operators in this set, and then of 
evaluating the matrix elements of all the generators of 
the group, can be an almost insoluble one. This 
difficulty is not necessarily related to the noncompact­
ness of the Lie group one is interested in. For example, 
in the use of the SUa group in the nuclear shell model, 
the relevant subgroup is the R3 subgroup correspond­
ing to space rotations; and one wishes to obtain the 
SU3 representations in a basis of angular-momentum 

1 As an example, see the proceedings of the session on "Infinite 
Representations of Particles," in Proceedings of the 1967 International 
Conference on Particles and Fields, University of Rochester, Rochester, 
N. Y. (Interscience Publishers, Inc., New York, 1967). 

eigenstates, rather than eigenstates of the SU2 ® U 
subgroup of SU3 .2 (It is the latter that is relevant in 
the use of SUa in elementary particle physics.) And the 
difficulties of obtaining the SUa representations in an 
R3 basis are well known. 

We are concerned with the problem of obtaining the 
unitary infinite-dimensional representations of a semi­
simple noncompact Lie group in a basis made up of 
unitary finite-dimensional representations of the 
maximal compact subgroup. Here the situation is as 
follows. For the groups of the form SU(n, 1) or 
SO(n, 1) [pseudo-unitary and pseudo-orthogonal 
groups in (n + 1) complex or real dimensions, respec­
tively], it is known that in any unitary irreducible 
representation (UIR) of the noncompact group, each 
UIR of the maximal compact subgroup appears at 
most once.3 [The maximal compact subgroups in the 
above cases are SU(n) ® U(1) and SO(n), respec­
tively.] Thus these groups are "multiplicity-free," and 
this property is closely related to a similar property 
for the compact groups SU(n + 1) and SO(n + 1) in 
the reduction of their UIR's under SU(n) ® U(I) and 

2 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958); V. 
Bargmann and M. Mosltinsky, Nucl. Phys. 18,697 (1960), 23, 177 
(1961); G. Racah in Group Theoretical Concepts and Methods in 
Elementary Particle Physics, F. Giirsey, Ed. (Gordon and Breach 
Science Publishers, Inc., New York, 1964). 

3 UIR's of these groups for all n have been obtained by U. Otto­
son, Commun. Math. Phys. 8, 228 (1968); 10, 114 (1968). See also 
L. C. Biedenharn, Noncompact Groups in Particle Physics, Y. Chow, 
Ed. (W. A. Benjamin, Inc., New York, 1966). 
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2 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958); V. 
Bargmann and M. Mosltinsky, Nucl. Phys. 18,697 (1960), 23, 177 
(1961); G. Racah in Group Theoretical Concepts and Methods in 
Elementary Particle Physics, F. Giirsey, Ed. (Gordon and Breach 
Science Publishers, Inc., New York, 1964). 
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L. C. Biedenharn, Noncompact Groups in Particle Physics, Y. Chow, 
Ed. (W. A. Benjamin, Inc., New York, 1966). 
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SO(n), respectively. However, in the cases of groups 
of the form SU(p, q) or SO(p, q) with p and q greater 
than unity, or the unimodular linear groups SL(n, R) 
and SL(n, C) for n ~ 3, this multiplicity-free property 
is generally lost; in other words, in general a VIR of 
one of these groups contains a given finite-dimensional 
VIR of the maximal compact subgroup more than 
once. 4 [There are, of course, special representations 
which are multiplicity-free.] In the multiplicity~free 

cases, the Casimir operators and internal labels 
associated with the maximal compact subgroup do 
form a complete commuting set, and provide a 
sufficient number of discrete quantum numbers to 
label the states of the entire VIR. And the VIR's of 
SU(n, 1) and of SO(n, 1) have been obtained by this 
method. When there is a multiplicity problem, how­
ever, the maximal compact subgroup by itself cannot 
supply a complete commuting set of operators, and 
the problem of taking care of the multiplicity is 
difficult. In fact there seem to be very few, if any, 
examples of noncompact groups whose VIR's involve 
multiplicity, and whose VIR's have been completely 
worked out in a basis of VIR's of the maximal 
compact subgroup. 

In this paper we describe a new approach to the 
solution of this multiplicity problem, based on the 
idea of "expansion" of Lie groups. Group contraction 
was introduced by Inonii and Wigner; it is a process 
by which representations of a given group yield, via 
a limiting procedure, representations of another 
group.s Loosely defined, group expansion is the 
inverse process to group contraction. We treat in 
detail the case of the group SL(3, C); however, this 
group already shows many of the features to be 
expected in principle in the most general case, and the 
methods we are suggesting have been adequately 
demonstrated. 

Before we proceed with the details, it is worthwhile 
to outline the way in which the multiplicity problem is 
solved. The group SL(3, C) is the group of all uni­
modular complex matrices in three dimensions. Its 
generators are sixteen in number; they may be 
separated into the eight generators of the maximal 
compact subgroup SU(3), and eight others to which 
we refer as the "noncompact generators." Using 
tensor notation with respect to SU(3), we can write 
the former as J;, and the latter as K; (0(, f3 = 1,2,3). 
In a VIR of SL(3, C) these generators obey the 
following Hermiticity and traceless ness properties 

• For an example of this situation, see A. Kihlberg, V. F. Muller, 
and F. Halbwachs, Commun. Math. Phys. 3,194 (1966). 

• E.lnonu and E. P. Wigner, Proc. Nat!. Acad. Sci. (U.S.) 39,510 
(1953). See also E. J. Saletan, J. Math. Phys. 2, 1 (1961). 

(repeated indices are to be summed over): 

(Jp)t = J!; (Kp)t = K!; J: = K: = 0; (1.1) 

and the following commutation relations: 

[J;, J;] = b:J; - b;J:, 
[J;, K;J = b:K; - b;K=, 
[Kp, K~J = b;J= - b=J;. 

(l.2a) 

(l.2b) 

(l.2c) 

Starting with suitable families of VIR's of SL(3, C), 
one obtains via group contraction, VIR's of another 
Lie group, SU(3) X Ts , which is not semisimple but 
has a semidirect product structure. SU(3) x Ts also 
has sixteen generators; eight of them are the Ja 

• (J 
generatIng the subgroup SU(3), and the remaining 
eight form an Abelian set transforming under SU(3) 
as a tensor belonging to the 8-dimensional adjoint 
representation of SU(3). Calling these P;, we have the 
following structure for SU(3) x Ts: 

(P,W = p!; P: = 0; 

[J;, p;J = b:P; - b;P=; 
[P;, p;J = o. 

(1.3a) 

(l.3b) 

(l.3c) 

Equation (l.2a) continues to hold, Eq. (l.3b) is the 
analog of Eq. (l.2b), and Eq. (I.3c) is the "contracted 
version" of Eq. (l.2c). Now it turns out that for many 
classes of representations, the multiplicity structure of 
SU(3) representations is the same for SL(3, C) and 
SU(3) x Ts. To be specific, corresponding to VIR's 
of SL(3, C) of the principal series, there are VIR's of 
SUa X Ts obtained from the former by group con­
traction, with the property that the spectrum of SU(3) 
representations is the same in both cases and is not 
affected by the contraction procedure. We can now 
take advantage of the fact that the multiplicity problem 
for VIR's of SUa X Ts (and any other such semidirect 
product in which the semisimple part is compact and 
the invariant part is Abelian) is completely solved, to 
split the SL(3, C) problem into two parts. First, we 
find a basis for the Hilbert space of a VIR of 
SU(3) x Ts, made up of states belonging to definite 
representations of SU(3), in which appropriate labels 
have been introduced to take care of the multiplicity 
problem. The way to do this has been shown by 
Goebel in connection with the group-theoretical 
formulation of strong-coupling theory; from Goebel's 
work we also know the matrix elements of the 
SUa X Ts generators P; in the SU(3) basis in explicit 
form.' Having done this, we now try to express the 

6 C. Goebel, Phys. Rev. Letters 16, 1130 (1966). See also C. 
Goebel in Noncompact Groups in Particle PhYSiCS, Y. Chow, Ed. 
(W. A. Benjamin, Inc., New York, 1966); and T. Cook and B. 
Sakita, J. Math. Phys. 8, 708 (1967). 
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8L(3, C) generators K; as (polynomial) functions of 
the 8U(3) x Ts generators J; and Pp . It is this process 
which we refer to as group expansion. When this has 
been done, we can completely work out the matrix 
elements of K; in the 8U(3) basis, knowing the matrix 
elements of J; and P'; in this basis. 

This kind of expansion of groups has been at­
tempted in the past for multiplicity-free groups. For 
example, it has been shown that one can express the 
generators of 80(n, 1) as (polynomial) functions of 
generators of E(n), the Euclidean group in n dimen­
sions; similarly one can pass from the inhomogeneous 
unitary group IU(n) to the pseudo-unitary group 
8U(n, 1).7 Many new features'appear, however, when 
one encounters groups with multiplicity problems. 

The material of this paper is arranged as follows. 
In Sec. 2, we describe the principal series of VIR's of 
8L(3, C), in the form in which they are given by 
Gel'fand and Naimark. This class of VIR's of 8L(3, C) 
itself consists of two distinct subclasses, namely, the 
principal nondegenerate series and the principal 
degenerate series. It is only in the former that one 
meets the multiplicity problem, the latter consisting of 
multiplicity-free VIR's. However, for completeness 
and for exhibiting the structure of the expansion 
formulas, we consider both classes. In Sec. 3, we 
describe the structure of all the VI R's of SU(3) x Ts , 
as obtained by Goebel's method. These VIR's can be 
usefully grouped into three families; two of them 
alone are contracted forms of the two subclasses of 
principal-series VIR's of 8L(3, C). Sections 4 and 5 
are devoted to the construction of the expansion 
formulas expressing the SL(3, C) generators as func­
tions of the SU(3) x Ts generators, in the principal 
nondegenerate series and the principal degenerate 
series, respectively. For comparison with the case of 
SL(3, C), we have described in Appendix A the way 
in which the generators of SL(2, C) can be written as 
functions of the generators of the nonsemisimple 
group SU(2) x Ta [i.e., the Euclidean group E(3) 
in 3-dimensional space]. Appendix B contains an 
account of Goebel's method for obtaining VIR's of 
the groups of the semidirect product form C x T, 
where C is an arbitrary compact semisimple group, 
and T denotes an Abelian set of generators trans­
forming irreducibly according to some given VIR of 
C. The problem of treating the supplementary series 

7 A. Sankaranarayanan, Nuovo Cimento 38, 1441 (1965); M. Y. 
Han, ibid. 42B, 367 (1966); J. Rosen and P. Roman, J. Math. Phys. 
7,2072 (1966); A. Bohm, Lectures in Theoretical PhYSics (UniverSity 
of Colorado Press, Boulder, Colorado, 1966); R. Hermann, 
Commun. Math. Phys. 2, IS5 (1966); A. Chakrabarti, "A Class of 
Representations of the IU(n) Algebra and Deformation to U(n, 1)," 
Preprint No. A110.1267, Centre de Physique Theorique de l'Ecole 
Poly technique, Paris, 1967. 

of VIR's of SL(3, C), and the purely algebraic 
question of computing the matrix elements of the 
SL(3, C) generators using the expansion formulas, 
will both be taken up elsewhere. 

2. PRINCIPAL SERIES UIR'S OF SL(3, C) 

The VIR's of the noncompact groups 8L(n, c) 
have been given by Gel'fand and Naimark.8 In this 
section, we summarize their construction of the 
principal nondegenerate series and the principal 
degenerate series of VIR's of 8L(3, C). We utilize 
these constructions later on. 

Each element g E 8L(3, C) corresponds to' a com­
plex 3 x 3 unimodular matrix: 

g -- (~:: ~:: ~::), det Igijl = + 1, (2.1) 

gal ga2 ga3 

and vice versa. The Lie algebra of SL(3, C) is 16-
dimensional, being spanned by the eight generators of 
the compact subgroup SU(3), and a set of eight 
"noncompact" generators. The former generate the 
subset of elements g which correspond to unimodular 
unitary matrices, while the latter generate the subset 
of elements g corresponding to unimodular Hermitian 
matrices. In the defining 3-dimensional representation 
of 8L(3, C), one may identify the 8U(3) generators 
J; and the "noncompact" ones K;, with the A-matrices 
of Gell-Mann9

: 

(2.2) 

Identified in this way, the J; and K j in a VIR of 
SL(3, C) would be linear self-adjoint operators. We 
find it more convenient, as far as the derivations of 
the expansion formulas are concerned, to deal with 
the J's and K's in tensor form, the components J; 
being given bylO 

J} = J 3 + (3)-iJs , J~ = J 1 + iJ2 , Jr = J 4 + iJs , 

J~ = J 1 - iJ2 , J~ = -J3 + (3)-tJs , J~ = J6 + iJ7 , 

J~ = J 4 - iJ5 , Ji = J G - iJ7 , J~ = -2(3)-tJs . 

(2.3) 

Similar relations define Kp. The commutation relations 
among Jp and K p' and the Hermiticity properties valid 
in a VIR of 8L(3, C), have been given in Eqs. (1.1) 
and (1.2). 

We now describe first the principal nondegenerate 
series of VIR's, and then the principal degenerate 
series. 

8 I. M. Gel'fand and M. A. Naimark, Unitiire Darstellungen der 
Klassischen Gruppen (Akademie-Verlag, Berlin, 1957). 

• M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 
10 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963). 
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Principal Nondegenerate Series 

Define two subgroups Z and K of SL(3, C) as 
follows. The subgroup Z consists of all elements Z 
corresponding to matrices of the form 

(
1 0 0) 

z~ Y 1 0 

{3 cx I 

(2.4) 

with arbitrary complex cx, {3, y. The subgroup K 
consists of all elements k corresponding to matrices of 
the form 

(

kll 
k~ 0 

o 
Then (almost) every element g E SL(3, C) can be 
expressed in a unique way as the product of one 
element in K and one element in Z: 

g=kz, kEK, ZEZ (2.6) 

(Those g that cannot be so expressed may be ignored. 
For details, see Ref. 8.) 

A VIR of the principal nondegenerate series is 
labeled by four parameters (rn2' rna, P2, Pa). Of these, 
rn2 and rna are integers (positive, negative, or zero), 
while P2 and Pa are two arbitrary real numbers. For 
given values of these parameters, the VIR is explicitly 
constructed as follows. We introduce in the Hilbert 
space Je(rn2' rna, P2, Pa) of this VIR a basis made up 
of nonnormalizable vectors, one corresponding to 
each element Z in the subgroup Z defined above. ll In 
other words, we have a basis labeled by three con­
tinuous complex variables cx, {3, y (alternatively, six 
real ones): 

Iz) = Icx, (3, y) (2.7) 

normalized according to 

(Zl I Z2) == (CXl{3lYl I CX2{32Y2) 

= b(CXl - cx2)b({3l - (32)b(YI - Y2), 

b(CXI - CX2) == b(Re CXI - Re cx2)b{lm CXI - 1m CX2), etc. 

(2.8) 

Given an element Z E Z, and any elementg E SL(3, C), 
the product zg can be written in a unique way as the 
product of one element in K and one in Z: 

zg = kzg • (2.9) 

11 This is a physicist's way of saying that the Hilbert space 
Je(m., ma, p., Ps) consists of all functions [(a., p, y) which are 
square-integrable, i.e., 

f~",··· f~", dRea.dlma.··· dlmy 1[(a.,P,y)I' < 00. 

The matrix elements of k and Zg are easily expressed 
in terms of those of Z and g. If we write the matrix 
corresponding to g-l as 

g-l __ - G12 G22 
( 

Gll -G21 

G13 -G2a 

then we have 

kll = [Gll + yG21 + (cxy - (3)G31]-l, 

kl2 = kilUG21 + cxG31], 

k13 = g13' 

k22 = ka31[Gll + yG21 + (cxy - (3)G3l], 

(2.10) 

k23 = yg13 + g23' (2.11) 

k33 = {3gl3 + cxg23 + g33' 

CXg = kaH{3g12 + cxg22 + g32], 

{3g = ka31[{3g11 + 0%1 + g31], 

Yo = kdG12 + yG22 + (cxy - (3)G32 j. 

Now, the unitary operator U(g) that represents the 
element g in the VIR (rn2' rna, P2, Pa) is given by 
specifying its action on a general basis vector: 

U(g) Iz) = peg, z) IZg), 

peg, z) = Ik221-2+iP2Ik331-4+iPs(k:2)lm'(k:a)lma. 
k22 kaa 

(2.12) 

The manner in which the VIR (rn2' rn3, P2' Pa) re­
duces under SU(3) is determined solely by the discrete 
parameters (rn2, rna). Let us refer to the finite­
dimensional VIR's of SU(3) as D(Al' A2) in the highest 
weight notation. lo Within a VIR of SU(3), "weight" 
means an eigenvalue pair for the two commuting 
operators (HI' H 2) = [t(3)--!(J{ - J:), --V:]. [In 
terms of isospin and hypercharge labels as used in 
particle physics, HI = (3)-t/3 and H2 = t Y.] Then, 
the VIR (rn2' rn3, P2' P3) of SL(3, C) contains a given 
VIR D(Al' ,12) of SU(3) as many times as this VIR 
of SU(3) contains linearly independent weight vectors 
corresponding to the weight [H3)-lrn2, t(2rns - rn2)].12 
This describes the way in which the Hilbert space 
Je(rn2' rna, P2' Pa) decomposes under SU(3). It is 
clear that in general if a VIR of SU(3) is contained in 
the space, it is contained many times. 

Principal Degenerate Series 

The principal degenerate series of VIR's of SL(3, C) 
is constructed with the aid of two subgroups of 
SL(3, C). Let us define the subgroup Z' to consist of 

12 A. Biihm, Phys. Rev. 158, 1408 (1967). 
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all elements z' corresponding to matrices of the form 

z' - (~ ~ ~) 
{3 IX 1 

(2.13) 

with arbitrary complex IX, {3. Next, we define the 
subgroup K' made up of all elements k' corresponding 
to matrices of the form 

k' - k21 k22 k23 , (kllk22 - k12k21)k33 = 1. 
(

kn k12 k13) 

o 0 k33 (2.14) 

Then, (almost) every element g E SL(3, C) can be 
expressed in a unique way as the product of one 
element in K' and one in Z' : 

g = k'z', k' E K', z' EZ'. (2.15) 

(Once again, one may ignore the set of those elements 
g that cannot be so decomposed.) 

A UIR of the principal degenerate series is charac­
terized by two parameters (m3' P3), where ma is any 
integer (positive, negative, or zero), and Pa is an 
arbitrary real number. The explicit construction of 
these UIR's proceeds as follows. In the Hilbert space 
Je(ma, Pa), we introduce a basis of nonnormalizable 
vectors labeled by the elements z' of the subgroup Z' 
of SL(3, C),13 That is, we have a basis labeled by the 
two complex variables IX, {3 (alternatively, four real 
ones): 

Iz') = IIX, (3) (2.16) 

normalized according to 

(z~ I z~) == (1X1{31 1 1X2(32) = b( 1X1 - 1X2)b({31 - (32)' (2.17) 

Given an element z' EZ', and any g E SL(3, C), we 
write the product z'g in a unique way in the following 
form: 

z'g=k'z;, k'EK', Z;EZ'. (2.18) 

The matrix elements of k' and z; are given in terms of 
z' and g by: 

kll = kal(IXGa2 + G22), 

k12 = kai(IXGal + G21), 

kla = gla, 

k2l = kai( - (3Ga2 + G12), 

k22 = kale - (3Gal + Gn ), 

kaa = (3gla + IXg2a + gaa, 

IXg = kai({3g12 + IXg22 + g32), 

(3g = kai({3gn + IXg21 + g3l)' 

(2.19) 

13 Once again, this is equivalent to saying that Je(m3, P3) consists 
of all square-integrable functions of two complex variables IX, fJ. 

Now, the unitary operator U(g) corresponding to any 
g E SL(3, C) acts in the following way: 

U(g) Iz') = A(g, z') Iz;), 

(2.20) 

As for the reduction of the UIR (ma, Pa) under 
SU(3), it turns out to be multiplicity free, and inde­
pendent of Pa. The UIR D(Al' A2) of SU(3) is con­
tained in the UIR (ma, Pa) of SL(3, C) if and only if 
D(Al' A2) contains a state which is an eigenstate of 
H2 with eigenvalue tma and which is invariant under 
the SU(2) subgroup generated by Ji, J~, and 
t(Jt - J~). If so, then D(Al' A2) appears exactly once 
in the UIR (ma, Pa) of SL(3, C). In the language of 
particle physics, (ma, Pa) contains, once each, those 
UIR's D(Al' A2) of SU(3) that contain an isospin 
singlet with hypercharge Y = jm3 , and no others. 

3. UIR'S OF THE GROUP SU(3) x Ts 

The Hermiticity and commutation properties of the 
elements J"p, P"p which generate the Lie algebra of the 
group SU(3) X Ts are contained in Eqs. (1.1)-(1.3). 
Here we write the UIR's of this group in an SU(3) 
basis, making explicit the solution of the multiplicity 
problem. We need to specify the way we label states 
belonging to definite UIR's (AI, A2) of SU(3). The 
operators J l , J2 , Ja, and J s [see (2.3)] generate an 
SU(2) ® U(1) subgroup of SU(3). Referring to the 
eigenvalues of (Jl )2 + (J2)2 + (Ja)2, Ja, and 2(3)-!Js 
as J(l + 1), M, and Y, respectively, the basis states 
for the UIR (AI, A2) of SU(3) can be written as14 

(3.1) 

The symbol IX denotes whatever labels may be neces­
sary to distinguish multiple occurrences of one and the 
same UIR (AI, A2) of SU(3) in a UIR of SL(3, C). 
(It will be specified in more detail shortly.) IX is an 
SU(3)-invariant label, being unchanged by the applica­
tion of the SU(3) generators J"p to the state (3.1). The 
way in which the J"p change the labels JMY is known 
and standardized.15 

We must next arrange the components of P; in such 
a way that they transform like, and are also labeled 
like, the basis states of the (1, 1) (i.e., adjoint) repre­
sentation of SU(3). This is done by the following 

U The yalues of I, M, Y within the .UIR ~A1' A.) of SU(3) may be 
parametrized as follows: for each pair of mtegers f, g obeying the 
inequalities A1 + A2 ;;::: f;;::: As ;;::: g ;;::: 0, we have once the (I, Y) 
multiplet with 1= !(f - g), Y = f + g - t(A1 + 2A2 ). For given 
I, of course, M = -I, -I + \, ... , I - I, I. See A. J. Macfarlane, 
E. C. G. Sudarshan, and C. Dullemond, Nuovo Cimento 30 845 
09~~ , 

1. L. C. Biedenharn, Phys. Letters 3, 69 0962). 
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identificationsl6 : 

Puo = -(6)-iPL PIOO = t(3)-i(p~ - P~), 
PI - IO = (6)-ip~, 

Pooo = iP=, Plit = (6)-lpL PI-it = (6)-iPL 
PH-I = _(6)-ip~, PI-I-l = (6)-lpi. (3.2) 

We have labeled the components of P, like the states 
in (3.1), as P1MY , where IMY go over the set of values 
appropriate to the (1,1) representation of SU(3). 

The VIR's of SU(3) X Ts are given in a Hilbert 
space in which the following states form an ortho­
normal basis: 

IAIA2; IMY; ](O)M(O) yeo»~. (3.3) 

(AI' A2) denotes a VIR of SU(3); for given (AI' A2), 
the range of values of IMY is knownl7 ; ]<0) M(O) yeo) 
constitute the multiplicity label at of (3.1). In principle, 
]<0) M(O) yeo) can go over the same range of values as 
IMY, though in each case they will be restricted to 
some subset of this range. In this basis, the matrix 
elements of P1MY can be expressed via the Wigner­
Eckart theorem in terms of Clebsch-Gordan (CG) 
coefficients for SU(3), and reduced matrix elements. IS 

We have the following formula valid for all VIR's of 
SU(3) X Ts: 

(A;A~; I'M'Y'; ](O)'MW),y(O)'/ 

x Pl"M"Y" IAIA2; ]MY; ](O)M(O)y(O» 

= 2 C(A1A2 11 A;A~y; [MY I"M"Y" I'M'Y') 
Y 

x (A'A.'· ](O)'M(O),y(O),// P //A. A. • ](O)M(O)y(o» 
1 2, 1 2, Y' 

(3.4a) 
(A;A.~; [(O)'M(O)'Y(O)'/I P /lA.

1
A

2
; [(O)M(O)y(O\ 

= [d(A1A2)/d(A;A~)]1 2 PlIO)" 
1 (0 )"=0,1 

X C(A1A2 1 1 A.{A~y; [(0) M(O) yeo) 

X ](0)" ° ° l(O)'M(O),y(O)'). (3.4b) 

The quantities Po and PI are two arbitrary real 
numbers. The symbol y is needed because the reduc­
tion of the direct product (1, 1) x (AI A2) of VIR's of 
SU(3) generally yields the VIR (A1A2) twice; corre­
spondingly, we have two independent orthogonal sets 
of CG coefficients, and also two independent reduced 
matrix elements, in the case (A~A~) = (AIA2)' The 
symbol d(AlA2) denotes the dimensionality of the 

16 N. Mukunda and L. K. Pandit, J. Math. Phys. 6, 746 (1965); 
J. G. Kuriyan, D. Lurie, and A. J. Macfarlane, ibid. 6, 722 (1965). 

17 See footnote 14. 
18 The notation used here for Clebsch-Gordan coefficients is that 

of J. G. Kuriyan, D. Lurie, and A. J. Macfarlane, J. Math. Phys. 
6, 722 (1965). The CG coefficients for an octet operator, which are 
what we need, are given in detail in this paper. 

VIR (AlAs) of SU(3).19 Formula (3.4) specifies com­
pletely the matrix elements of P in every VIR of 
SU(3) x T8 • Different classes of VIR's are distin­
guished by stating the ranges of AlA2/ (0) M(O) yeo) and 
the restrictions on Po and Pl' (Notice that in any case, 
P has nonz~ro matrix elements only if MCO)' = MCO), 
y(W = y(O).) We now give these details, dividing the 
VIR's into three types. 

Type I: This type consists of VIR's with PI =F 0, 
±(3)lpo (Po mayor may not be zero). M(O) and YCO) are 
kept fixed at any allowed values, while ]<0) varies. 
Having chosen M(O) and Y(O), we can describe the 
representation space as follows. Each VIR (AI A2) of 
SU(3) occurs as often as it contains states/MY with 
M = MCO) and Y = Y(O); these several appearances 
of (A1A2) are distinguished by the label 1(0), and states 
with different values of ]<0) are orthogonal. Thus, a 
VIR of Type I is completely specified by (MCO), Y(O) , 
Po, PI)' The SU(3) content of such a VIR is clearly 
identical with the SU(3) content of a principal non­
degenerate series VIR (m2m3P2P3) of SL(3, C) for 
which 

m2 = 2MCO), 2m3 - m2 = 3 Y(O). (3.5) 

Type II: We now set PI = 0, Po =F 0. Then (3.4) 
shows that for nonzero matrix elements, 1(0), M(O), 
and yeo) should all be unchanged. We define VIR's of 
Type II by the choice ]<0) = M(O) = 0, yeo) = any 
fixed allowed value. Thus, a Type II VIR is specified 
by (Y(O),Po). Any VIR (A1A2) of SU(3) appears once 
if it contains the state 1M Y = (0, 0, yeo»~, and is 
absent otherwise. The SU(3) content of such a VIR is 
identical with the SU(3) content of a principal 
degenerate series VIR (ma, P3) of SL(3, C),20 for 
which 

2m3 = 3Y(0). (3.6) 

Type III: We stilI maintain PI = 0, Po =F 0, but 
consider the cases 1(0) =F 0. As a matter of convenience 
we choose M(O) = 1(0) (the representation is inde­
pendent of how MCO) is chosen). As before, yeo) may 
be assigned any fixed allowed value. So a Type III 
VIR of SU(3) x Ts is specified by (/(0), YCO), Po) with 
1(0) =F 0. This VIR contains the VIR (AI A2) of SU(3) 
once, if (AIA2) contains a state IMY with 1= M = 
]<0), Y = Y(O), and not otherwise. We see that there 
is no member of the principal series VIR's of SL(3, C) 
whose SU(3) content coincides exactly with that of a 
Type III VIR of SU(3) x T8 • 

We have separated the VIR's of SU(3) x Ts in the 
case PI = ° into Types II and III precisely because 

19 Explicitly, d(A.1 , A.) = I(A1 + 1)(A. + 1)(A1 + A. + 2). 
20 The SU(3) content of the VIR (rna, P.) of SL(3, C) is very simply 

stated. Each VIR (A1' A.I ) for which A. - A1 = rn. appears once. 
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only in one case do we have an SU(3) decomposition 
identical with that for some principal degenerate series 
VIR of SL(3, C). 

4. ANALYSIS OF PRINCIPAL NONDEGENERATE 
SERIES VIR'S 

Our aim in this section is to show that the generators 
of SL(3, C) in any VIR (rn2' rna, P2, P3) of the 
principal nondegenerate series can be expressed as 
functions of the generators of a suitably chosen VIR 
of SU(3) x Ts (belonging to Type 1). The construction 
of the VIR's of SL(3, C) described in Sec. 2 has the 
unsatisfactory feature that even if we consider an 
element g belonging to the maximal compact sub­
group SU(3), the right-hand side of Eq. (2.12) has a 
dependence on the continuous parameters P2 and Pa' 
This dependence can be removed by working with a 
new set of basis states differing from the old ones by 
suitably chosen phase factors. We define the new 
basis vectors as follows: 

Iz) = exp [i4>(z)] Iz), 

4>(z) = Hp2 - Ps) In (I + 1~12 + IPI2
) 

- tP21n (1 + lyl2 + IP - ~yI2). (4.1) 

(The symbol z stands for the three complex parameters 
~, p, and y.) The new states obey the same ortho­
normality conditions as the old ones: 

(zsl Zl) = b(1X2 - ~1)b(P2 - Pl)b(Y2 - Yl)' (4.2) 

The action of U(g) on these new vectors is easily 
computed. It reads: 

U(g) Iz) = exp [i4>(z) - i4>(zg)]p.(g, z) Izg}. (4.3) 

The quantity p(g, z) is defined in Eq. (2.12), while the 
parameters defining Zg are given in Eq. (2.11). Now 
one may verify that if g is an element of SU(3), then 
the right-hand side of (4.3) does not depend at all 
on the continuous parameters P2 and Ps· 

We are now in a position to compute the SL(3, C) 
generators, by considering g in (4.3) to be an element 
close to the identity. Each generator appears as a 
linear differential operator in the variables ~, p, y. 
We express everything in terms of ~, p, Y and their 
complex conjugates ~*, p*, y*. Partial differentiation 
with respect to IX and ~* is defined as follows: if 
~ = x + iy is the separation of ex into real and 
imaginary parts, then 

21. = ~ - i.!, 2 ~ = .! + i.!. (4.4) 
o~ ax oy OIX* ax oy 

The rule for Hermitian conjugation is 

(:IX)t = - a:.' (a:.)t = - :~ . (4.5) 

Similar rules hold with respect to P and y. We list 
now some of the SU(3) generators J;: 

1 a a a a 
J1 = !(m2 + ma) + fJ ofJ - fJ* ofJ* + y oy - y. oy*' 

J~ = - !m2Y - y + p! - ~* ~ - y2.! _ ..!. , 
OIX or oy oy* 

J~ = tm2~y - !mafJ - fJ + (lXy - fJ) 

- IXfJ1. - fJ2~ - ~ + y(~y - fJ)'!, 
o~ afJ oP* ay 

J~ = tema - 2m2' + ~1. -IX*..!. _ y.! + y*..!., 
OIX ~* oy ~* 

J~ = !(m2 - m3)~ _ ~ _ ~2 ! 
o~ 

- ..!. - IXfJ.! + (~y - fJ).1.. (4.6) 
OIX* o(J oy 

The four remaining operators J; can be obtained from 
those listed by using the tracelessness and Hermiticity 
properties given in Eq. (1.1). 

Turning our attention next to the "noncompact" 
generators K;, the expressions here are somewhat 
more involved than for J;. Each K'ft consists of two 
parts, one involving the parameters P2 and P3 (and 
not containing differential operators), and another 
involving differential operators. We find it convenient 
to use sand P2 in place of Ps and P2, where 

Ps = (s + I)P2' (4.7) 

We write K; in the form 

KII. - pp'" + K(O)/Z 
fJ - 2 fJ fJ' (4.8) 

where the second term on the right has no P2 or s 
dependence, and where P'P and KJO)", individually obey 
the same tracelessness and Hermiticity conditions as 
K;. As in (4.6), it is sufficient to write down just five 
components of Pp arid of KAO)I1.. These are: 

p~ = (s/3A)(2(J(J* - IX~* - ]) 
+ !B-l[(~y - (J)(~*y* - (J*) + yy. - 2], 

pi = (s/A)P~* + B-1y, 

p~ = (s/A){J + B-1(fJ - ~Y), 

p; = (s/3A)(2~~* -,. (J(J. - 1) 

+ lB-l[(~y - tJ)(IX*Y* - (J*) - 2yy· + 1], 

p~ = (s/A}ex + B-1(IXY - (J)y*, 

A = 1 + lex!2 + 1(J1 2
, B = 1 + lyl2 + locY _ P1 2

, 

(4.9) 
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and 

K(O)1 = -2i - i((J~ + (J*~ + ~ + *~) 
1 0(J 0(J* Y oy Y oy* ' 

KfO)2 = ~ m2y + iy 
2 

. ((J 0 * 0 0 2 0) -I -+(X -+--y -, 
o(x 0(J* oy* oy 

Kio)a = - .! m2(Xy + .! ma(J + i«(J - (Xy) + i(J 
2 2 

+ i ((X(J i. + (J2 i. - ~ - y( (Xy - (J) i.) , 
O(X 0(J 0(J* oy 

K~O)2 = -i((X~ + (X*~ - y~ - y*~), 
o(x O(X* oy oy* 

(o)a i ( )' K2 = - ma - m2 (X + I(x 
2 

+ i((X2 i. - ~ + (X(J i. + «(J - (Xy) i.). 
O(X O(X* 0(J oy 

(4.10) 

As was to be expected, the SU(3) generators J; do 
not have any P2 or s dependence at all. Knowing the 
commutation rules obeyed by J; and K;, we see 
immediately that if we "contract" K; to Pp (keeping 
s fixed), so that 

" L 1 K" Pp = t - p, (4.11) 
P .... 00 P2 

then J; and Pp will obey the commutation rules of 
SU(3} X Tg. In this process of contraction, the SU(3) 
content of the representation space has not been 
affected at all. Thus it is plausible that via contraction 
we have obtained a Type I VIR of SU(3} x Tg , whose 
SU(3) content is identical with that of the original 
SL(3, C) representation. We cannot yet be sure that 
this is the case, since we do not know whether J; and 
pcp form an irreducible set of operators. However, we 
now show that we can in fact express K; explicitly as a 
function of J; and Pp: this will then be a proof that 
we are dealing here with a Type I VIR of SU(3) x Tg. 

The process of establishing that K; is a function of 
J; and Pp is a rather tedious one. The main problem is 
that the expressions we have given in (4.6), (4.9), and 
(4.10) for these operators are unwieldy, and one needs 
a more compact way of writing them. To this end, let 
us introduce six auxiliary complex variables z,,' w" 
«(X = 1,2,3), their complex conjugates, and the 
following rules of Hermitian conjugation: 

(1-)t = _ ~, (~)t = _ _ 0 . (4.12) 
OZ" oz: ow" ow,,* 

In terms of these independent variables, consider the 

following operators: 

- 0 0 0 0 J; = zp- - z*- - w"- + wp*--
OZ" IX oZp owp ow"* 

- lr5p"(Z 1- _ z* ~ _ wy ~ + O)y* _0_) 
3 Y ::l Y ::l * ::l Y ::l Y* ' 

UZy UZy uW uW 

Z z* wIXwP* p; = s ~ - -- - t(s - l)b~, 
Z1Z: wy wy* 

K; = P2Pp 

_ i(Z 1- + z* ~ _ w" ~ _ wP* _0_) 
P OZ " oz* owP ow"* 

" p 

i ~,,( 0 * 0 • 0 "* 0 ) + -Up Zy- + Zy - - W'- - W' -- . 
3 OZy oz: owy owy* 

(4.13) 

By construction these expressions obey the same 
tracelessness and Hermiticity conditions as J; 'PP , and 
K;. Further, it is quite easy to check that on the one 
hand J and K obey the SL(3, C) commutation rules, 
while J and P obey those of SU(3) x Tg. (These 
statements are true, whatever be the values of P2 and 
s.) Now it is comparatively easy to handle J, p, and 
K. However, under certain conditions, these are 
nothing but the generators J, p, and K given earlier! 
Let us proceed to demonstrate this fact. First of all, 
one can see that the variables X and X*, where 

X = z"w", (4.14) 

commute with J;, Pp, and K;. Next, let us use in place 
of the independent variables Z,,' w", the following six 
quantities (and their complex conjugates): 

oc = Z2/Za, (J = ZI/Za, Za; 

y = -w2/w\ X, WI. (4.15) 

These are independent variables. One can now express 
all the operators J, p, K in terms of oc, (J, Za, y, X, and 
WI (and their complex conjugates). Then the fact that 
X and X* commute with J and K means that when this 
is done, there will be no terms in J and K involving 
(o/OX) and (o/OX*). Therefore, if after expressing every­
thing in terms of the new variables, we set X and X* 
identically equal to zero, the resulting linear differential 
operators will continue to obey the same commutation 
rules asJ,p, and K. Imagine now that X and X* have 
been equated to zero. Then one finds (and this is no 
surprise) that the only dependence on Z3' wI, z:, and 
w1* in any of these operators is through the quantities 

o 
E = za;-, 

UZa 

1 0 F=w -
OWl' 

(4.16) 

Once more, it follows that the commutation rules 



                                                                                                                                    

EXPANSION OF LIE GROUPS, REPRESENTATIONS OF SL(3, C) 905 

amongJ,p, and Kwill not be affected at all, if each of 
the operators E, E*, F, F* is replaced by a numerical 
quantity. To make contact with the known expressions 
for J, p, and K, one has to set21 

E- -1 + t(rn2 - rna), E* - -1 - t(rn2 - rna), 

F- -1 - !rn2, F* - -1 + !rn2. (4.17) 

Let us indicate by an asterisk any equation which is 
valid only when X = X* = 0 and E, E*, F, F* have 
been replaced as above. Then we have 

J- Il * Jil 
P = P' 

P-Il .!. pll 
P - P' 

K il * Kil P = p' 

(4.18) 

As a consequence of these remarks, it is enough to find 
a relationship among J, K, and p, in order to obtain 
one among J, K, and p. Further, we need not keep 
track of terms which have X or X* as a coefficient. 

The task of expressing K as a function of J and p is 
comparatively easy. It is convenient to regard K, p, 
and J as 3 x 3 matrices, the subscript (superscript) 
being identified as the column (row) index. We begin 
by defining the square of the matrix p: 

(4.19) 

We next compute certain matrix products involving 
p, q, and J. We use the following abbreviations: 

Zyz: = Iz12, wYwY* = Iw12; 
Ril = wllz z* ~ + z*wP*z _0_ . 

P P y owY " y owY* ' (4.20) 

o 0 Sil = wllz wy* - + z*wP*wY - • 
P P oz Il oz* 

Y Y 

By staring long and hard at the expressions involved, 
one sees that it is advantageous to compute the follow­
ing combinations22 : 

(pJ - Jp)"p ~ 3p"p + 1~2 Rp - 1~12 Sp 

- s(z 1-.- + z*~) + (Wll~ + wp*_O_) 
P oz Il oz* owP owll* Il fJ 

Z z* wllwP* 
- 2s ~ + 2 -- (4.21a) 

Izl2 Iwl2 ' 
21 This replacement of E, E*, F, F* by numbers corresponds to 

the statement that one reaches unitary representations of SL(3, C) 
by starting with finite-dimensional nonunitary tensorial representa­
tions, and then ma.king the rank of the tensor nonintegraI. 

•• One is led to these expressions by noticing that the differential 
operators in Kp appear with an explicit factor of i, whereas such 
factors are not present in either Pp or Jp, and combining this with 

the form of the Hermiticity condition on KJ . 

(qJ - Jq)p ~ 3qp - i(S2 + s + 1)t5p 

+ 1 s(s + 2) Ril .! (2s + 1) Sil 
3 IZl2 P + 3 Iwl2 P 

- -s(s + 2) zP- + z:-1 (0 0 ) 
3 o~ oz= 

- -(2s + 1) wll - + wP*--1 (0 0 ) 
3 owP owll* 

2 z Z* 2 wllwP* 
- - s(s + 2) ~ - - (2s + 1) -- (4.21b) 

3 . IzI2 3 Iwl2 ' 

(qJp - fiJq)"p 4: - ~ (S2 + s + l)p"p 
3 

_ s(s + I, Ril s(s + 1) Sil 
IzI2 P + Iwl2 P 

- ! (s - 1)2(jjJ - Jp)"p - ! (s - l)(qJ - Jq)"p. 
9 3 

(4.21c) 

We compare these expressions with K; as written down 
in Eq. (4.13) and try to express K as a linear combina­
tion of the above expressions. Explicitly we set 

K; - P2Pp 4: ia(pJ - Jp); + ib(qJ - Jq); 

+ ie[qJp - pJq + t(s - 1)2 

x (pJ - Jp) + Hs - 1)(qJ - Jq)]"p 

+ terms involving p"p, q"p, and 158, (4.22) 

Comparing the coefficients of ZpCO/OZIl)' wll(O/owP), 
R"p, and S;, we get: 

as + ibs(s + 2) = 1, 

a - tb(2s + 1) = 1, 

as + ibs(s + 2) - es(s + 1) = 0, 

-a + ib(2s + 1) + es(s + 1) = O. 

(4.23) 

These four equations are consistent with one another, 
and give a unique solution for a, b, and e: 

a = (S2 + 4s + 1)/3s(s + 1), 

b = (1 - s)/s(s + 1), 

e = l/s(s + 1). 

(4.24) 

We are now in a position to insert these values of a, b, 
e into (4.22), and convert (4.22) into a relation that 
holds between the generators K;, PP' and J'; given 
in Eqs. (4.6) to (4.10). Instead of expressing this 
relationship in terms of q, we prefer to write it in 
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terms of the traceless part of q, 2a namely, in terms of 

kp = qp - ibpq~ ~ P;Pb - *b;p~pX. (4.25) 

Straightforward algebra then gives: 

K" - " + ~ i (S2 + 4s + 1) ( J _ J )" 
p - P2Pp 9 s(s + 1) P P p 

+ ~ i (1 - s) (kJ _ Jk)p" 
3 s(s + 1) 

+ i . (kJp - pJk)p. 
s(s + 1) 

(4.26) 

We have thus succeeded in expressing the SL(3, C) 
generators K; as functions of the SU(3) X Tg gener­
ators J; and pp. [The SU(3) part is carried over un­
changed from one group to the other, of course.] It 
remains to identify the parameters that define the 
SU(3) x Tg representation generated by J; and pp. 
In Sec. 3, we have seen that a VIR of SU(3) x Tg 
belonging to Type I is specified by the four parameters 
(M(O), Y(O), Po ,PI), Since we already know the SU(3) 
content of the SL(3, C) representation, in terms of 
m2 and m3' we must have 

To determine Po, and PI, we note that, using the 
equality 

-a: * a: Pp = Pp, (4.28) 

we can quite easily compute the invariants associated 
with P'P of Eq. (4.9). We find 

Tr (pp) == PpP~ = i(s2 + s + 1), 

Tr (ppp) == P'PP~P~ = t(2s + 1)(S2 + S - 2). (4.29) 

On the other hand, we can also compute these same 
invariants in the general SU(3) X Tg VIR set up in 
Sec. 3. In the VIR (M(O), Y(O),Po,PI), we find 

Tr(PP) = 6(p~ + pD, 

Tr (PPP) = 6po(p~ - 3p~). (4.30) 

[Here, one must use the numerical relationship between 
Pp written as a matrix, and the same quantities written 
in the formPBfy ; this is given in Eq. (3.2).] However, 
equating (4.29) and (4.30) does not uniquely determine 
Po and PI, and one has to compute the Casimir 
operators of SL(3, C) and the remaining ones of 

18 It is easy to see that if Jp and p''p are the generators of the Type I 
UIR (M(O), y(O), Po, P,) of SU(3) X Ta, then Jp and 

kp = p;p} - ~pP~P~ 

are the generators of the UIR (MIO), YIO), P~ - pi, -2POPI) of 
SU(3) X Ta. (If Po = 0, ±V3 PI, then the set.IJ, kp is reducible.) 

SU(3) X Tg. 24 Thereupon, one finds the following 
values for Po and PI in terms of s: 

Po = t(2s + 1), PI = -H3)-( (4.31) 

Putting all the pieces together, we can state the 
final result as follows: In order to obtain the generators 
J;, Kp of a principal nondegenerate series VIR 
(m2, ma, P2' Pa) of SL(3, C), we start with a Type I 
VIR (M(O), Y(O),Po,PI) of SU(3) x Tg , with M(O) 
and Y(O) being determined by m2 and ma by (4.27), and 
Po and PI given in terms of s = (PsJ P2) - 1 by (4.31). 
In this VIR of SU(3) x Tg , we can construct the 
"noncompact" SL(3, C) generators K; explicitly in 
terms ::>f the SU(3) x Tg generators J; and P'P by 
means of the formula (4.26). The SU(3) generators 
Jp are the same for both groups. Since in Sec. 3 we have 
shown how one can construct any SU(3) X Tg VIR 
in an SU(3) basis, with a complete solution to the 
multiplicity problem, and with explicit expressions 
for the matrix elements of Pp in such a basis, one can 
in principle use (4.26) to compute the matrix elements 
of K; in an SU(3) basis. 

S. ANALYSIS OF PRINCIPAL DEGENERATE 
SERIES UIR'S 

We now turn to the VIR's of SL(3, C) of the prin­
cipal degenerate series, and show how their generators 
can be constructed in terms of the SU(3) x Tg 
generators belonging to VIR's of Type n. As we have 
stated in Sec. 1, in this case there is no multiplicity 
problem at all. However, the results are interesting 
in the sense that the expansion formula relating 
K; to J; and P'P is quite different in appearance from 
(4.26). 

Consider a VIR (ma, Ps) of SL(3, C), belonging to 
the principal degenerate series. Its explicit construction 
is given in Sec. 2. As in the previous section, we begin 
by defining a new set of basis vectors differing from the 
old ones by a phase factor: 

Iz') = exp [itp(z')] Iz'), 
tp(z') = -tP3ln (1 + 101:1 2 + IPI 2

). (5.1) 

(The symbol z' stands for the two complex variables 
01:, p.) The orthonormality relation is unchanged: 

(z~ I zD = b(0I:2 - OI:I)b(P2 - PI)' (5.2) 

The unitary operator U(g) acts as follows: 

U(g) Iz') = exp [itp(z') - itp(z;W.(g, z') Iz;). (5.3) 

The parameters corresponding to z;, and the function 
A(g, z'), have been defined in Eqs. (2.19) and (2.20). 

•• One has to equate the values of the Casimir operators of 
SU(3) X T. to the "contracted" values of those of SL(3, C). 
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With the choice of basis states, the right-hand side of 
(5.3) is independent of Ps when g belongs to SU(3). 

We now follow closely the steps of Sec. 4. First we 
list the SU(3) generators as linear differential opera­
tors: 

1 1 {3 a {3* a 
J1 = 3ma + o{3 - o{3*' 

J2 = {3 i. - oc* ~ 
1 aoc a{3* ' 

J3 = - .! m {3 - ~ {3 - oc{3 ~ - {32 i. - ~ (5.4) 
1 2 a 2 OOC a{3 o{3* ' 

J~ = .! ma + oc i. - oc* ~ , 
3 OOC aoc* 

J3 = - .! m oc - ~ oc - oc2 ~ - ~ - oc{3 i. . 
2 2 3 2 aoc ooc* o{3 

The noncompact generators K; split into Pa dependent 
and Pa independent parts: 

Ka. _ P pa. + K(O)a. p-ap p. (5.5) 

We list p and K(O) next: 

P~ = lA-1(2{J{3* - ococ* - 1), P~ = A-l{3OC*, 

P~ = A-1fJ, P~ = lA-1(2ococ* - {3fJ* - 1), (5.6) 

P~ = A-1oc; A = 1 + locl 2 + IfJ1 2
, 

and 

KWH = - i - i({3 i. + {3*~) 
1 ofJ o{3* ' 

K(O)2 = _ i (fJ i. + oc* ~) 
1 OOC a{J* , 

K(o)a = !.. m fJ + ~ ifJ + i (ocfJ ~ + fJ2 .! - ~) 
1 2 a 2 OOC ofJ o{J*' 

K(O)2 .. ( a + * 0) 2 = -I - I oc- oc - , 
ooc ooc* 

K~o)a = !.. maOC + ~ ioc + i(oc2 i. - ~ + r;.fJ i.). 
2 2 ooc aoc* o{3 

(5.7) 

From the components of J, K, and p that we have 
listed, the remaining ones may be obtained by using 
the Hermiticity relations and tracelessness. Here again 
we may regard Pp as the "contracted form" of K;, 
so that 

Pp = Lt 1- Kp. (5.8) 
p.-+ ct) Pa 

Therefore, since Jff is independent of Pa, Jff, and Pp 
are the generators of a VIR of SU(3) x Ts of Type 
II [we already know the SU(3) content of the space 

of the VIR]. We go on to show that K; can be recon­
structed in terms of J; and p'; . 

The first step is to introduce more symmetric 
expressions for the generators. Introduce three auxil­
iary complex variables Za. and their complex conju­
gates, and set 

Ja = Z ~ - z*~ - .!t5a(z ~ - z*~) p P-:. a-:.* 3 P Y-:. Y-:.*' UZa. uz p uZ y uZy 

_a. _ zpz: _ ! t5a. 
Pp - * 3 p' 

Zyzy 

K a -a. .( iJ + * iJ) p = PaPp - 1 zp - Za --; 
oZa oZp 

+ ~ t5ff( Zy a~y + z; o~;)· (5.9) 

It is easy to check that J and p obey the commutation 
relations of S U(3) x Ts , while J and K obey those of 
SL(3, C), for any value of Pa. If now we rewrite these 
operators in terms of the new variables 

(5.10) 

and their complex conjugates, then the variables Za 

and z: and the operators iJjoza and iJjoz: appear only 
in the following combinations: 

za(iJjoza), z:(ojozt). (5.11) 

Therefore, if after expressing J, p, and K in terms of 
the new variables we were to replace the quantities in 
(5.11) by pure numbers, this would not alter the 
commutation relations obeyed by J, p, and K. We 
make the choice 

* a 3 1 
Z -~--+-m 

a iJzt 2 2 a, 
a 3 1 

Z -~----m 
a aZa 2 2 a, 

(5.12) 

and indicate by an asterisk any equation valid only 
after (5.12) has been used. Then we find 

J-a * Ja -IX * a Ka * KIX p = p' Pp = Pp, p = p, (5.13) 

where the J, p, and K operators are listed in Eqs. (5.4) 
to (5.7). Thus it suffices to find a way to express Kin 
terms of p and J. 

For this purpose, we compute the expression 
pJ - Jp, so that 

(pJ - Jp)'; 4: -15'; - (zp1- + z:~). (5.14) 
oZa OZ p 

This leads immediately to the desired relation among 
K,p, andJ: 

K; 4: P3PP + i(pJ - Jp)"p. (5.15) 
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That is, the SL(3, C) generators K; of (5.5) are ex­
pressible in terms of the SU(3) x Ts generators J;, 
Pp of (5.4) and (5.6) by means of the formula 

Kp = PaPp + i(pJ - Jp)p. (5.16) 

It remains to identify the VIR of SU(3) x Ts that one 
must use in order to obtain the SL(3, C) generators 
for a given VIR (ms, Ps) of SL(3, C). We have seen in 
Sec. 3 that a Type II VIR of SU(3) x Ts is labeled in 
the form (Y(ol, Po). Comparing the S U(3) contents 
involved, we deduce the equation 

(5.17) 

To fix Po, we note that in the VIR (yeo), Po) of SU(3) x 
Ts , we have 

Tr(PP) = 6pL 

while from (5.6) and (5.13) we have 

Tr (pp) = {. 

(5.18) 

(5.19) 

Comparing (5.18) and (5.19) we conclude that in order 
to obtain the generators of the principal degenerate 
series VIR (ms, Pa) of SL(3, C), we start with the 
generatorsJ,p of the Type II VIR (lma, i) of SU(3) x 
Ts , and in this VIR construct K according to (5.16). 
Then J and K are the required generators of SL(3, C). 

6. CONCLUSION 

We have demonstrated that given any unitary 
representation of SL(3, C) belonging to the principal 
series (either nondegenerate or degenerate), one may 
express the corresponding infinitesimal generators as 
functions of a suitably chosen unitary representation 
of SU(3) x Ts. Since we know how to handle the 
representations of the latter group in an SU(3) basis, 
we have achieved a solution of the multiplicity problem 
for SL(3, C). 

"Expansion formulas" of this kind, expressing the 
generators of a semisimple noncompact Lie gr.o~p as 
functions of the generators of a related nonsemlslmple 
Lie group, have been used in the past. 25 For example, 
formulas showing how one may construct the gener­
ators of the group SO(n, 1) in terms of those of E(n) 
have been derived. First, one notices that in these 
cases, the VIR's of SO(n, 1) are multiplicity-free in 
their reduction with respect to SO(n). Perhaps related 
to this is the fact that the formulas expressing the 
SO(n, 1) generators in terms of those of E(n) are 
universal, that is, representation-independent. Namely, 
given only the commutation relations obeyed .by the 
E(n) generators, one is able to construct functIOns of 
these generators, obeying the commutation relations 

2. See Ref. 7. 

of the group SO(n, 1). The functional form of the 
SO(n, 1) generators as expressed in terms of the E(n) 
generators, as well as the fact that they obey the 
SO(n, 1) commutation relations, are independent of 
the particular representation of E(n) that one starts 
with. Second, one can carry out the construction of the 
SO(n, 1) generators starting with any unitary irre­
ducible representation of E(n) and using the universal 
formulas. This fact is of course a consequence of the 
first property. Both these properties are in direct 
contrast to the case of SL(3, C). First of all, we find 
that the formulas expressing K; as functions of J; and 
pa have quite different forms in the nondegenerate 
JIR's on the one hand and the degenerate VIR's 
on the other. Thus, if one starts with a VIR of 
SU(3) x Ts with generators Jp and Pp and does not 
specify which type of VIR one has, but depends only 
on the commutation relations obeyed by them, it 
turns out to be impossible to construct functions 
Ka of Jp and Pp (at least, functions involving Jp no 
n/ore than linearly!) which will have the commutatiod 
relations of SL(3, C). In other words, if we take the 
Lie algebra of SU(3) x Ts , and write down the most 
general operator function of Jp and Pp (which is at 
most linear in Jp) having the right SU(3) transforma­
tion properties, we obtain an expression involving a 
certain number of numerical coefficients. If we now 
demand that these operators obey the SL(3, C) 
commutation rules, we get a large number of algebraic 
equations for the co~fficients; and these equations 
turn out to be inconsistent! Thus, the reason why the 
expressions we have obtained in each case for K; in 
terms of Jp and Pp do have the correct commutation 
properties is that in each kind of representation of 
SU(3) x Ts there always exist many operator identi­
ties among Jp and Pp' in addition to the Lie-algebra 
relations. These additional relations differ from one 
type of representation to another and cannot be 
specified in advance. Second, assuming that the list 
of principal series VIR's of SL(3, C) given by Gel'fand 
and Naimark is complete, there is a whole class of 
VIR's of SU(3) x Ts in which we are unable to form 
functions having the SL(3, C) commutation rules (or 
so it seems at present !). This class of U fR's is what we 
call Type Iff. At any rate, one can say that on con­
tracting principal series VIR's of SL(3, C) in the way 
we have prescribed, one ends up with SU(3) x Ts 
representations of Types I and II only. We conjecture 
that these properties, which distinguish SL(3, C) from 
SO(n, 1), for example, are intimately related to the 
existence of the multiplicity problem for SL(3, C). 

We have here been able to derive the principal 
series VIR's of SL(3, C) from the SU(3) x Ts VIR's. 
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We expect that once the matrix elements of the 
SL(3, C) generators in the SU(3) basis are known, 
then by a process of analytic continuation in the 
parameters of the representation one will arrive at the 
supplementary series of VIR's of SL(3, C). This 
certainly is the case for SO(n, 1).26 

When one examines the expansion formulas a bit 
closely, it seems unlikely that the matrix elements of 
K; in the SU(3) basis will have any simple algebraic 
appearance. For instance, they do not seem to be 
square roots of rational functions of the various 
parameters involved. They seem rather to be sums of 
such expressions. An analogous situation was en­
countered in the problem of constructing SU(3) 
representations in an R(3) basis.27 

An unfortunate feature of the present work must be 
admitted. We have derived the expansion formulas by 
starting with the SL(3, C) representations in some 
form and then by algebraic manipulations showing that 
the requisite relations hold among the SL(3, C) and 
SU(3) X Ts generators. Such an approach would be 
valueless if one's aim was to obtain the SL(3, C) 
representations starting with just the representations 
of the far simpler SU(3) x Ts structure. Hopefully, 
the experience gained herein will help us reverse this 
situation. 

In any case, one can see that similar solutions to the 
multiplicity problems exist for all the SL(n, C) groups. 
It would be most interesting to develop similar tech­
niques to deal with the groups SL(3, R), 0(3,2), and 
0(4, 2) since till now it has been practically impossible 
to deal with the multiplicity problems in these cases. 
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APPENDIX A 

The principal series of VIR's of SL(2, C) may be 
obtained from the VIR's of £(3) by an "expansion 
formula." We briefly outline the method, so that one 
may compare this with the SL(3, C) case. 

The SL(2, C) and £(3) algebras are spanned by Jk , 

28 J. G. Kuriyan, N. Mukunda, and E. C. G. Sudarshan, Commun. 
Math. Phys. 8, 204 (1968). 

27 See the comments by G. Racah, Ref. 2. 

Kk , andJk , Pk (k = 1,2,3) respectively. The SL(2, C) 
commutation rules are 

[Jk , Jz] = iEkZmJ m' 

[Jk , K l] = iEk1mKm, 

[Kk,KI] = -iEklmJm' 

(Ala) 

(Alb) 

(Alc) 

For £(3), (Ala) remain:; valid, while (Alb) and (Alc) 
are replaced by: 

[Jk, Pzl = iEk1mPrn , 

[Pk , Pz] = o. (A2) 

The principal series of VIR's of SL(2, C) is param­
etrized in the form Uo, p}, where jo assumes one of 
the values 0, t, 1, t, ... , 00, while p is any real 
number. jo specifies the "lowest" representation of 
SU(2) (smallest spin) present in the VIR of SL(2, C).2S 
The VIR's of £(3) are labeled in the form Uo, p} 
where once again jo is the lowest representation of 
SU(2) present, and Ipl is the magnitude of P.29 
Explicitly one has: 

SL(2, C): KiKi - JiJ i = 1 + p2 - jL 

KiJi = -pjo; 

E(3): PiPi = p2, PiJi = -pjo' (A3) 

Let us for simplicity work with VIR's of £(3) in which 
P j is normalized so that p = + 1. Then given the 
generators Ji , Pi of such a representation, one finds 
that the operators 

K; = pP j + tEikzCJkPI - PJI) (A4) 

obey both (Alb) and (Alc), for any value of the (real) 
parameter p. The main point in verifying this state­
ment is that one needs only to use the commutation 
relations of £(3), namely (A2), without specifying the 
VIR of £(3) involved (apart of course from the 
condition p = + 1). One finds easily that the VIR of 
SL(2, C) obtained this way is Uo, p}. Thus by starting 
with a suitable VIR of £(3) (choice of jo) and choosing 
p in (A4) appropriately, one obtains all the principal 
series VIR's of SL(2, C). (A4) can be rewritten as 

K j = (p + i)P j - EjklPkJI. (AS) 

In tensor notation, this becomes somewhat similar to 
the SL(3, C) expansion formulas; writing 

K~ = -K: = K a, 

K~ = Kl + iK2' 

K~ = Kl - iK2' 

28 For details, see I. M. Gel'fand, R. A. Minlos, and Z. Ya. 
Shapiro, Representations of the Rotation and Lorentz Groups and 
Their Applications (The Macmillan Co., New York, 1963). 

29 For representations of E(3), see W. Pauli, "Continuous Groups 
in Quantum Mechanics," in Ergebnisse der exakten Naturwissen­
schaften (Springer-Verlag, Berlin, 1965), Vol. 37. 
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and similarly for P and I, (AS) looks as follows: 

Kp = pPp + ii(PI - IP)p. (A6) 

APPENDIX B 

We describe in this appendix a technique, due to 
Go~bel, 6 for obtaining the UIR's of a class of groups 
which have a semi direct product structure. The main 
virtues of this method are its simplicity, the fact that 
one obtains all the VIR's, an explicit method for 
labeling basis vectors, and explicit expressions for 
matrix elements of the generators. 

We consider groups of the form C X T: C denotes 
any compact simple Lie group, and T stands for a set 
of Abelian generators transforming according to some 
irreducible finite-dimensional unitary representation 
of C. (The X sign denotes the semidirect product.) We 
denote elements of C by 0, 0', ... , and we use the 
symbol j to run over the set of all inequivalent VIR's 
of C. Thus in the VIRj of C, the element 0 is repre­
sented by a unitary matrix which we write as 

(Bt) 

(It is assumed that in each VIR a definite way to label 
the states has been adopted.) These matrices obey the 
group composition law in the form 

! (O)~m,(O')~'m" = (OO')~m" (B2) 
m' 

and are unitary: 

! (O)!:m,(O)~m" = bm'm'" (B3) 
m 

We denote the VIR that T belongs to by A. and label 
the components of Tby IX, (3, .... Looking for a VIR 
of C X T amounts to finding unitary operators U(O), 
and operators T!, obeying the following conditions: 

U(O)U(O') = U(OO'), 

U(O)T!U(O-I) = (O);«T;, 

[T!, T;l = 0, 

(B4a) 

(B4b) 

(B4c) 

We assume that the VIR A is equivalent to its complex 
conjugate. In that case, we have to impose appropriate 
Hermiticity conditions on T!. 

Equations (B4) are solved in the following manner. 
We introduce the Hilbert space Je of all square 
integrable functions f(O) on c. (We use, of course, 
the left- and right-translation invariant integration 
over C, normalized so that C has unit volume.) A 
nonnormalizable basis for Je consists of the vectors 

10); (0' 10) = 15(0',0), (BS) 

the delta function being normalized so that 

f 15(0',0) dO = 1. (B6) 

The operators U(O) are defined via left translation as 

U(O) 10') = 100'), (B7) 

so that they are unitary, and obey (B4a). The states 
10) are chosen to be simultaneous eigenstates of T!, 
and one sets 

T! 10) = ! tp(O-I);« 10). (BS) 
p 

Here tp is any set of constants, as many in number as 
there are components of T, and obeying reality con­
ditions that parallel the Hermiticity conditions on T. 
One can easily check that (B4b) is valid. Since the T; 
are simultaneously diagonal, (B4c) is obviously 
satisfied. 

Equations (B7) and (BS) provide us with a class of 
unitary representations of C X T, different members 
of this class being distinguished by the choice of tp. 

These representations may be reducible. At any rate, 
one can see easily that every VIR of C X T is con­
tained in one of the representations constructed above. 
This follows from two facts: first, if the numerical 
tensor tp has a continuous "little group," this "little 
group" is certainly compact and hence the Peter-Weyl 
theorem applies to it; second, in the representation 
constructed above, we have in fact chosen the regular 
representation of this "little group." 

It is easy to write (B7) and (BS) in a basis made up 
of VIR's of C. For this we use the Peter-Weyl 
theorem for C, which says that the set of all the 
matrix elements (BI) for allj spans the Hilbert space 
Je. Correspondingly we may introduce a discrete basis 
in Je: 

Ij, m; n) = (d;)! f dO(O-I):"" 10). (B9) 

Here, d; denotes the dimensionality of the VIR j of C. 
The representation matrices of C obey the usual 
completeness and orthogonality relations: 

! dlO):"n(O')!:n = 15(0', 0), (BlOa) 
;mn 

f dO(O)~;"n,(O)!nn = dj1b i';bm 'mbn'n' (BlOb) 

Vsing all these properties, one establishes that the 
states Ijmn) form an orthonormal basis, namely, 

(" , 'I' . .... .. ) m n }mn) = Ur;Um'mUn'n' (Btl) 

and that they transform under U(O) as follows: 

U(O) Ijmn) = ! (O):"'m Ijm'n). (Bt2) 
m' 



                                                                                                                                    

EXPANSION OF LIE GROUPS, REPRESENTATIONS OF SL(3, C) 911 

This last equation makes explicit the fact that Je 
contains each VIR i of C as often as its dimension 
d;. The label n, which is invariant under application 
of the unitary operators U(O), labels this multiplicity. 

We can now compute the matrix elements of T! in 
the new basis. We find 

(j'm'n'l T! Ijmn) 

= (drd i)! t tfJ f dO(O)~,~,(O)~m(O)~a. (B13) 

The integral appearing here can be evaluated and 
expressed in terms of Clebsch-Gordan (CG) coeffi~ 
cients of the group C. We denote these, in analogy to 
the familiar SU(2) case, by 

C(jj'j", I mm'm"). (BI4) 

We have an index, appearing along with the "final" 
representation 1" to take care of the fact that the direct 
product of the VIR's i and j' may contain the VIR i" 
several times. Correspondingly we may have several 
linearly independent sets of CG coefficients for fixed 
i, j', and j". We assume that for different values of, 
they are orthogonal. Explicitly, we have 

L CUj'j"r I mm'm")C(jj'j"'s I mm'm"') 
mm' 

We then find 

(i'm'n'l T! limn) 

= [d/fdr ]! L tfJC(j).,j'r I mocm')C(j).,j'r I n{3n'). (BI6) 
fJ.r 

The first CG coefficient on the right~hand side of (BI6) 
is the one demanded by the Wigner-Eckart theorem. 
The second one is essentially the reduced matrix 
element of T: 

(i'n'" TA "jn)r = [d;/d;,]! L tfJC(j).,}'r I n{3n'). (BI7) 
fJ 

This completes the evaluation of the matrix elements 
of T in the basis made up of VIR's of C. 

The next important thing we need to know is that 
two choices of tfJ related in a certain way give rise to 
unitarily equivalent representations of C X T. Let us 
define a set of operators V('l) in Je, so that 

V('l) I'l') = 10''l-l). (BI8) 

Clearly they are unitary, produce another representa~ 
tion of C, and commute with the U('l): 

U('l)V('l') = V(O')U(O). (BI9) 

If we start with a representation of C X T afforded by 
the operators U('l) and T: (determined by a definite 
choice of tp), we can obtain a unitarily equivalent 
representation by performing a unitary transforma­
tion with the operator V(Oo) , where 'lo is any fixed 
element of C. By (BI9) this transformation does not 
affect U(O) at all. On the other hand, we find 

V('l;I)T!VCOo) 10) = L t/J(O-I)Pa 10), 
p 

tp = L (Oo);pty. (B20) 
y 

Thus, the representations of C X T corresponding to 
tp and tp are unitarily equivalent. This allows us to 
choose tp in the most convenient form, without really 
altering the representation. We are allowed to assume 
the vanishing of many components of tp , if this can be 
achieved by a transformation of the form that takes us 
from t fJ to t~. 

In the case of SU(3) x Ts , the representation)., of 
SU(3) is the octet or adjoint representation. Corre~ 
spondingly, t/1 can be written in form tIMY [see Eq. 
(3.2)]. It is easily verified that by an appropriate 
choice of 0 0 in (B20), we can arrange to have the only 
nonvanishing components of lIMY to be t 100 and tooo. 

This is the basis for the classification of VIR's of 
SU(3) x Ts given in Sec. 3. 
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In this paper we consider the determination of the two-point electric field correlation tensor ina random 
polycrystalline medium subjected to a constant average electric field. The medium is supposed to be 
statistically homogeneous and isotropic and to be composed of crystals all of the same kind. For media 
whose principal permittivities do not differ greatly from one another, we employ perturbation techniques 
to linearize the governing equations and derive explicit expressions for both the correlation function and 
the cross correlation of the electric field and permittivity tensor. We also determine the effective per­
mittivity in this limit. For media with arbitrary principal permittivities, we derive bounds on the effective 
permittivity which depend on certain two point correlation functions and which reduce to our perturba­
tion solution in the limit of small differences in principal permittivities. 

INTRODUCTION 

In a statistical description of a polycrystal subjected 
to an applied electric field, the permittivity tensor Eij 
of the medium is characterized by the sequence of 
correlation functions 

(EilI1(X1)Ei2;.(X2)··· Einin(Xn», n = 1,2,··· , 

ik,jk = 1,2,3, (1) 

and the field Ei by the moments 

(EiJX1)Ei2(X2) .•• Ein(Xn» 

and 

(Ei1(X1)· •. Ein(Xn) 

(2) 

X Ein+1;n+l(xn+1)· .. Ein+".in+m(Xn+m», (3) 

where brackets denote ensemble averages. This paper 
is concerned only with a study of the two-point 
correlation functions (Ei(x1)E;(x2» and (Ei (X1)E;k(X2». 
Because of the statistical nonlinearity of the problem, 
each of these functions must be determined by the 
solution of an infinite set of coupled partial differential 
equations. We consider a medium whose crystals 
have principal permittivities Ei which satisfy the in­
equality 

[h\)I::;i~i:5a(Ei - Ei)2r« li~ Ei · 

In this case we can employ perturbation techniques 
similar to those used in Beran and Molyneuxl to 
linearize the problem and to determine the statistical 
moments of interest. We also determine the effective 
permittivity of the medium and find that it depends 
explicitly on the form of the two-point permittivity 
correlation tensor. This result is contrary to the 
small perturbation limit of the bounds derived by 

1 M. Beran and J. Molyneux, Nuovo Cimento 30, 1406 (1963). 

Hashin and Shtrikman.2 We are thus lead to a careful 
analysis of their work which reveals that they have 
made implicit assumptions about the statistics of the 
medium and, thus, that their results are not valid in 
general. In the course of this analysis we derive 
upper and lower bounds on the effective permittivity. 

BASIC EQUATIONS 

We refer the polycrystalline medium to a fixed set of 
Cartesian axes and assume that the relation between 
the displacement vector D = (D1 , D2 , Da) and the 
electric field vector E = (E1, E2, Ea) at a point 
x = (Xl' X2 , xa) is given by 

(4) 

where the permittivity tensor Eij is symmetric and we 
sum over repeated indices. We assume that the medium 
is infinite, statistically homogeneous, and isotropic, 
and composed of randomly oriented crystals all of 
which have the same principal permittivities Ei , 

i = 1, 2, 3. In this case, it is easy to show that the 
average value of Ei; is equal to 3-1

( E1 + E2 + Ea)bii 

where bii is the Kronecker delta. Thus we can write 
Eij in the form Ei; = 3-I(EI + E2 + Ea)bi; + <i' where 
E;i is the fluctuating part of the permittivity, or as 

Eij = (E) [bii + .:xOij], 

where (E) = 3-1(EI + E2 + Ea), 

.:x = (E)-l[max «E;;)2)]1, 
i ,; 

(5) 

and Oil = {(E).:x)-l<; has zero average and zero trace. 
As is well known, the static electric field is governed 
by the equations 

(6) 

• z. Hashin and S. Shtrikman, Phys. Rev. 130, 129 (1963). 

912 
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and 
a 

(Jiik;- Ek = 0, 
uXi 

(7) 

where biik is the alternating tensor of Levi-Civita. 
Equation (7) shows that E is the gradient of a scalar 
function, i.e., 

arp 
E·=--, aX

i 

(8) 

Combining Eqs. (5), (6), and (8), we have 

a2rp a arp -- + oc- OkZ- = o. 
aXkaXk aXk ax z 

(9) 

We split rp into its average and fluctuating parts by 
letting 

, a(rp) ( arp' , (10) rp = (rp) + rp, - = - Ei ), - = -Ei' 
aXi aXi 

where (Ei ) is the constant average electric field and E; 
is the fluctuating field. Substituting Eq. (10) into 
Eq. (9), we find that 

a2rp' ae a arp' 
-- - oc(Ez) -1E1 + oc - OkZ- = O. (11) 
aXkaXk aXk oXk ax! 

SMALL PERTURBATION RESULTS 

By the same reasoning which leads to the expression 
for (Eii), it may be shown that 

(Eihz) = (E2)biAz + (15)-1P 

x [-3-1bi Az + 2'-1(biZbik + bi/.,biZ)], (12) 

where P = (El - E2)2 + (El - E3)2 + (E2 - E3)2. Hence, 
the parameter ex = (E)-1[(45)-12P]l appearing in 
Eq. (11) will be small if 

[(45)-121::::i~i::::3(Ei - Ej)2r« 3-
1 
it1 Ei · 

We assume this is the case and write rp' as the formal 
series 

rp'(X) = i ocnrp(n)(x). (13) 
1'1=1 

Substituting Eq. (13) into Eq. (11) and equating 
powers of oc, we find 

a2m(l) of) 
-...:...T-=(E!)~ 
aXmaxm oXm' 

(14) 

02rp(n) a arp(n-1) 
-'--- = - - ()kl--' n = 2,3,···. (15) 
aXmoxm OXk oXz 

In principle, all terms in the perturbation series for rp' 
may be calculated from Eqs. (14) and (15), We shall 
consider only the lowest-order terms. Multiplying 

Eq. (14) by O;ix') and averaging, we obtain 

y2(rp(l)(X)(Jik(X + r» = -(Ez) ~ «()mz(x)()iix + r», 
arm 

(16) 

where r = x' - x, y2 = a2/ ar mar m , and by statistical 
homogeneity both the permittivity correlation tensor 
and the cross correlation between the potential and 
the permittivity depend on r only. We find an equation 
for the potential correlation function by multiplying 
Eq. (14) by rp(lJ(x') and averaging. The result is 

o 
y2(rp(1)(X)rp(1)(x + r» = -(Ez) - (rp(1)(x)(Jzm(x - r». 

arm 
(17) 

Thus, to the order of approximation considered, both 
correlation functions of interest satisfy Poisson's 
equation. We require that they be analytic for all r 
and vanish as Irl---+ 00. By well-known potential 
theory arguments, the solutions of Eqs. (16) and (17) 
will be unique and, because of the conditions imposed 
at infinity, will be the particular solutions of these 
equations. Since the source term on the right-hand 
side of Eq. (16) is a contracted product of a third­
order homogeneous tensor with the average electric 
field, it is natural to assume that 

(rp(1)(X)()j/C(X + r» = '¥ikZ(r)(Ez). (18) 

Indeed, using the Green's function for Poisson's 
equation in infinite space, it may be shown that the 
cross-correlation function must be of this form. The 
function '¥;kZ satisfies 

y2,¥ ikZ = - ~ C mlik' (19) 
orm 

where Ciik!(r) = (Oii(X)Ok!(X + r». Arguments similar 
to those given above lead to the form 

(20) 

for the potential correlation function. The equation 
satisfied by <Pi; is 

y2Wii = - ':Ja '¥ki;( -r). (21) 
urk 

It is easy to show that the electric field correlation 
functions of interest are obtained from <Pii and 'I";ik 
by the formulas 

02 

(E;(x)E;(x + r» = _oc2 
--- tl\zCr)(Ek)(Ez) (22) ariar i 

and 
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Since the medium is assumed to be isotropic as 
well as homogeneous, the permittivity correlation 
function must be an isotropic tensor of the fourth 
order. From the symmetry of ()ij and the fact that 
CijkZ(r) = CkZij(-r), it follows that this tensor must 
have the forms 

CijkZ = Prir,rkrZ + Q[rirj15kz + rkrz15ij] 

+ R[rh15j! + rirZ15jk + rjrk15a + r;rz15ik] 

+ S15iAz + T[15ik15 jz + 15i/15jk], (24) 

where P, Q, etc., are functions of Irl2 only. The 
vanishing of the trace of the ()ij implies the conditions 

Irl2 P + 3Q + 4R = 0, 

Irl2 Q + 3S + 21 = 0, 

and, using Eq. (12), we see that 

(2S) 

(26) 

S(O) = -3-l2T(0) = 2-1• (27) 

Now let us solve Eq. (19). Since the source term, 
OCml'klorm' is an isotropic tensor of the third order, 
the same must be true for 'Y;kl' Taking into account 
the required symmetries of the indices, we see that 
'Yjkl must have the form 

'YjkZ(r) = 'IPlr;rkrz + "P2[r j15kZ + rk15 jz ] + "PSrZ15jk' (28) 

where "Pv ' 11 = 1, 2, 3 are functions of Irl2 only, and 
we determine the particular solution by requiring "I'v 
to satisfy Eq. (19). When Eq. (28) is substituted into 
Eq. (19), we find 

{"P~ + 8p-1"P{ + Cl}r jrkrZ 

+ {"P; + 4p-l"P~ + 2"Pl + C2}[rA, + rz15 jk] 

+ {"P; + 4p-l"P~ + 2"Pl + Cs}rz15 jk = 0, (29) 

where p = IrI, "Pv and Cv are functions of p only, 
, = dldp, and 

C1 = pP' + 6P + p-1Q-l + 2p-l R', (30) 

C2 = Q + SR + pR' + p-1T', (31) 

Cs = 4Q + 2R + pQ' + p-1S'. (32) 

Since Eq. (29) must hold for allj, k, and I, we obtain 
three ordinary differential equations (of the Euler 
type) for "Pv(p) by setting each of the three curly 
brackets equal to zero. The solutions of these equa­
tions which are finite at the origin and vanish at 

3 G. K. Batchelor, The Theory of Homogeneous Turbulence 
(Cambridge University Press, New York, \953). 

infinity are given by 

"Plp) = t[p-7LP ;6(Q - R) d; 

- 2 i oo

(3Q + 4R);-1 d;} 
"Plp) = --:l2r;p-5LP ;6(Q - R) d; 

(33) 

+ T-gp-SLP(3t'Q - 6t'R + SeT') d; 

+ a1lp2ioo(3Q + 4R);-1 d; 

- 1-;; LXl ;(Q - R) d; - iT(p), 

"Pip) = -a\p-5!oP;O(Q - R) d; 

- 125P-SLP(;'Q - U'R + HST') d; 

+ a1lp2ioo(3Q + 4R);-1 d; 

(34) 

+ 1
2
5 LXl;(Q - R) d~ + iT(p). (35) 

The cross correlation between the electric field and 
permittivity tensor may be obtained by differentiation. 
Bquation (23) becomes 

<E~(x)ejk(X + r» 

= (e)rx.2(Ez){p-l"P{rirjrkrZ 

+ "Pl[rkrz15ij + r ;rz15ik + r jrk15i/] 

+ p-l"P~[rir ,15kz + rirk15n ] + p-l"P~rirzlj'k 
+ "Ps15i/15,k + "P2[15ij15kz + 15ik15 jz ]). (36) 

The solution of Eq. (21) is obtained in a similar 
way. Since <I>;;(r) is an isotropic tensor of the second 
order, it has the form 

(37) 

where F and G are functions of p2 = Irl2 only. It is 
found that these functions satisfy the equations 

F" + 6p-1F' = [p"P{ + S"P1 + p-l"P~ + p-l"P~] == A, 

(38) 

G" + 2p-1G' + 2F = [p"P~ + 4"P2 + "Ps] == B. (39) 

The solutions of Eqs. (38) and (39) having the required 
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behavior at p = 0 and 00 are 

F(p) = _5-1 [p-sLP ~6A d~ + LXl ~A d~} (40) 

G(p) = -[p-If:eB d~ + f"~B d~J 

- 3-1[p-I1P~4A d~ + ioo~3A d~J 

+ (15rl[p-3LP~6A d~ + p2ioo~A d~l (41) 

Using Eq. (22), it is found that the electric-field 
correlation function is given by 

<E~(x)Ei(x + r» 
= -rx2(Ek)(Ez){p-2(F" - p-IF')rjrhrz 

+ p-1F'[rjrzb;k + rjriJjl + r;rkbi! 

+ r;rZbik + rkrzb;;l + p-2(G" - p-1G')rjr;bkZ 

+ F[bikbj! + bjzb;kl + p-1G'o;;bkZ }' (42) 

and in particular we find 

<E~E;) = -rx2(Ek )(Ez) 

X {t[ tT(O) - lloo ~(7Q + llR) d~ ] 
x [bjkb;t - lb;;bkzl 

+ ~-[tT(O) + loo~(Q - R)d~JbjAz}. (43) 

SUMMARY OF PERTURBATION RESULTS 

The behavior of (E;(X)E;,,(X + r» and (E;(x)E;(x + 
r» for large values of Irl is similar to the scalar 
permittivity case already considered in Beran and 
Molyneux.1 If it is assumed that the functions T(Jrl) 
and S(lr!) decay as Irl-", (] > 0 as Irl-> 00, then Q 
and R will fall off as Irl-( .. +2) and P will approach zero 
as Ir/-( .. +4). It is then found that both correlation 
functions behave as Irl-" if 0 < (] ~ 3 and as Irl-3 if 
(] > 3. This behavior is due to the fact that the govern­
ing equations are essentially equivalent (for (] > 3) to 
Poisson's equation with a dipole source. 

The effective permittivity, Ecff' may be calculated 
from the results already given. This quantity is defined 
by the equation Ecff(Ej ) = (Di ), where (Dj ) is the 
average displacement field. Thus, 

Ecff(Ej) = (E;;E;) = (E)(E j ) + (E~;Ei> 
= [(E) + (E)rx2(41f'2(0) + 1f'3(O»](Ei ) (44) 

and, using Eqs. (34), (35), and (27), we obtain 

Eeff = (E)[ 1 - trx2 + irx2 1000 

~(R - Q) d~ 1 (45) 

It is seen that the effective permittivity depends 
explicitly on the form of the correlation tensor Ci1kZ(r). 
Now the bounds on Eeff obtained in Ref. 2 coincide 
in the limit of small perturbations and equal the first 
two terms of Eq. (45). This fact leads to the conjecture 
that an implicit assumption about the form of the 
permittivity correlation tensor has been made in 
Ref. 2. In the next section we show that this is true 
and, therefore, that these bounds are only valid for 
special types of polycrystals. We shall also derive a set 
of bounds which are valid for arbitrary polycrystals 
and which reduce to Eq. (45) in the small perturbation 
limit. 

REMARKS ON THE EFFECTIVE 
PERMITTIVITY 

If u = (ul , U2, us) is a spatially stationary random 
function, an ensemble average of the form F[u] = 
(j(u(X») , where j is an ordinary function of three 
variables, will be independent of x and can be con­
sidered as a functional of u. It is possible, therefore, 
to formulate statistical variational principles based on 
functionals of this type. We begin this section by 
proving an extension of a variational principle given 
in Ref. 2 to a statistical principle which is applicable 
to the class of media dealt with in this paper. 

Consider a statistically homogeneous and isotropic 
medium composed of randomly oriented crystals 
each of which has the same principal permittivities. 
Let the medium be subjected to a constant average 
electric field (E). Let.A(, be the class of all random 
vector functions C = (CI , C2 , Ca) defined on the 
medium such that any C belonging to .A(, satisfies the 
conditions: 

0) C is a mean-square differentiable (see, for 
example, Ref. 4). 

Oi) The n-point correlations of C with itself, any 
other element of .A(" or with the permittivity tensor are 
functions only of the 3(n - I)-dimensional vector 
which specifies the configuration of the points, and 
are sufficiently smooth to allow formal interchange 
of averaging and differentiation. 

Define on .A(, the functional 

where Eo is a constant, 7Til satisfies 7Tikl7T k1 = bj ;, 

7Tij = Ei ; - Eobi ;,5 and A is that element of.A(, which 

4 M. S. Bartlett, An Introduction to Stochastic Processes (Cam­
bridge University Press, New York, 1955). 

6 At each point x in the medium, the principal axes for 7T;j(X) 
coincide with those of the permittivity tensor Ej;(X). Hence, the 
principal values for 7Tjl(X) at x are Ej - Eo, i = 1,2,3, where E; 

are the (nonrandom) principal permittivities of the crystals com­
prising the medium. Thus 7Ti/ exists for all Eo "" E" j = I, 2, 3. 
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satisfies 

(47) 

(48) 

(A) = O. (49) 

It can be shown that the vector A is uniquely deter­
mined almost everywhere by Eqs. (47), (48), and (49). 
Indeed, suppose that there were two fields A (1) and A (2) 

satisfying these equations. Then A (3) == A (1) - A (2) 

would have vanishing divergence, curl, and average. 
It would then follow that 

= 1...- (A~3)1p) = O. 
oXi 

(50) 

The first equality in Eq. (50) follows from the fact 
that curl A(3) = 0 so that A(3) = grad 1p. The second 
equality is simply an identity. The third equality 
follows from the fact that div A(3) = 0 and that A(3) 
is an element of .At, so that averaging and differentia­
tion commute. The last equality follows from statistical 
homogeneity. Since (A(3» = 0, it follows from Eq. 
(50) that the dispersion of A (3) is zero and therefore 
that A(3) vanishes almost everywhere. The functional 
U defined by Eq. (46) is stationary for Ci = TrikEk 
where E is the actual electric field in the medium which 
satisfies Eqs. (6) and (7). This stationary value is an 
absolute minimum (maximum) when EO is greater 
(less) than the largest (smallest) principal permittivity. 

It may be shown that for Ci = TrikEk' Eqs. (47)­
(49) imply that A = E', the actual fluctuating field in 
the medium. Thus, if we let Ci = TrikEk + Ci , we find 
Ai = E; + ai where a is determined from C by Eqs. 
(47) through (49). Substitution into (46) gives 

It follows from Eq. (48) that ak = -01p/oxk, and we 
can manipulate both terms in Eq. (53) as we have 
done in (52). The first term on the right vanishes 
because of Eq. (6) and the second term becomes 
(q;'(OCk/OXk» because of (47). Similar considerations 
give 

(54) 

and, therefore, 

U[TrikEk + ci ] = U[TrikEk] 

+ {-(Tr"k/CkCl) - Eo(akak)}, (55) 

where, according to (54), the term in the curly brackets 
may also be written in the form 

-«Tr"k/ + Eo1bkl)CkCl) + Eo1«Eoak + ck)(Eoak + ck»· 
The proof is concluded by finding the principal values 
of Tr"k11 and using the well-known properties of quad­
ratic forms. 

In order to compute U for a given trial function, it is 
necessary to find (AkCk). We let Ai = 01p/oxi so as to 
satisfy Eq. (48), then multiply Eq. (47) by Cj(x'), and 
obtain (after setting r = x' - x and using homo­
geneity) 

\7 2(1p(x)C;(x + r» = 1001 ~ (C;(x)C;(x + r». (56) ari 

Using the Green's function for Poisson's equation in 
infinite space to solve Eq. (56), we find 

(1p(x)C/x + r» 

= (4TrEo)-1J 1r - sl-1 ~ (C;(x)C/x + s» ds. (57) 
OSi 

Finally, taking the partial derivative of Eq. (57) with 
respect to Xj and then setting r = 0, we have the result 

- (Tr"k/CkC1) + (ckak). (51) where C~ = Ck - (Ck) and Vij(r) = (C;(x)C;(x + r». 
Since E' = -grad q;', 

( , _ /. oq;,\ _ / ~ ( ') , OC~\ 
CkEA') - -\ck / - -\ q; CA, - q; / 

oXk oXk OXI< 

__ ~ ( 'c) /, ack \ _ / ' OCk \ (52) 
- oXk q; k + \q; ox/ - \q; ox/' 

where we use statistical homogeneity and the fact 
that averaging and differentiation commute. From the 
fact that (a) = 0, we obtain 

(akTrkIEI) = (akEkIEl) - Eo<akE~). (53) 

Consider the function 

where Yij is defined by the equation y;;(3EoTrj,} + 
Yjk) = bik · It may be shown that Yij is a symmetric 
tensor having the same principle axes as the permit­
tivity tensor and having principal values Yi = 
(Ei - EO)(Ei + 2100)-1, i = 1,2,3. Thus, (Y;;) = (y)(jiJ 
with 

3 

(y) = 3-1 L Yi . 
i~1 



                                                                                                                                    

STATISTICAL PROPERTIES OF POL YCR YST ALLINE DIELECTRICS 917 

Letting Y~j be the fluctuating part of Yii' we find that where 

(c ) = 3E"0(Y) (E.) 
i 1 _ (I') " 

(60) 

C' 3E"0 , (E ) 
i = --- Yij j' 

1 - (I') 
(61) 

We assume that C is an element of the class..At, and can 
be used to determine bounds on E"eff' We introduce the 
parameter 1X0 == [max «y~j)2)]!(y)-1 and define Wij as 

i,i 
(lXo(y»-lY~j' Then from Eq. (61) we find that 

V;,(r) = [ 3E"o(Y) J21X~cm!(r)<Ek)(E!), (62) 
1 - (I') 

where, by the same reasoning that leads to Eq. (24), 

C:Jkl(r) == (wj;(x)wdx + r» 

= P(O)rirjrkr! + Q(O)[rirjbk! + rkrAj] 

+ R(O)[rirkbjl + rir!b jk + rjrkbi/ + rjr!bik ] 

+ S(O)bijbk! + T(O)[bikb j ! + bi/b jk ], (63) 

with P(O), Q(O), etc., functions of Irl only which satisfy 
relations (25) through (27). It may be shown that 

IX~(Y) 2C:~k!( r) 
3 

= ~ (apix)ap,(x)aqix + r)aqz{x + r»ypyq - (YijY,,!), 
p,q=l 

where aij(x) is the direction cosine of the ith principal 
axis of the crystal at x relative to the Xj direction. Thus, 
all the functions in Eq. (63) can be calculated from the 
known statistical properties of the medium. Sub­
stituting for Vij(r) from the above expression and 
performing the integrations in Eq. (58), we find that 

J = ~[ 3\1') JIX~ roo ~(R(O) _ Q(O» d~. 
3 1 - (I') Jo 

Hence, we have 

U[C] = E"0(E)2{1 + 2(1') + J}. 
1 - (I') 

(65) 

(66) 

By the definition of the effective permittivity, it follows 
that U[1TijEj] = (E"kjEj)(Ek) = E"eff(E)2. Thus, if it is 
assumed that E"1 < E"2 < E"3, Eq. (66) gives the bounds6 

E"1{1 + 2(1') + J} < E"eff < E"a{l + 2(1') + J} 
1 - (I') '0=<1 1 - (I') '0=<. 

where the values of E"o have been chosen so as to make 
the upper and lower bounds coincide in the small 
perturbation limit. It may be shown that, in this 
limit, Eq. (67) gives the same expression for E"eff as 
Eq. (45). 

The integral J which appears in Eq. (67) is absent 
from the bounds given in Ref. 2 which are also derived 
using the trial function of Eq. (59). The reason for 
this discrepancy is that Hashin and Shtrikman have 
assumed (A~Ck) = (3E"O)-1(C~C~), and, as is seen from 
Eq. (64), thIS formula is true only for media in which 
the integral J vanishes. Thus, the results they have 
given are valid only for such media. Furthermore, 
the remark made in Ref. 2 that the actual value of U 
is approached most closely by the trial function of 
Eq. (59) is not valid unless J = O. The problem of 
obtaining better bounds on E"eff is currently being 
considered by the author. 

We note in conclusion that the results derived in 
this paper apply as well to the analysis of random 
media with tensor electrical conductivity and other 
mathematically analogous problems. 

. • T~e ten.sor 1rii(x) appearing in the variational principle (45) 
!S not I~vertlble for <0 = <lor <3' However, U[C) as given by Eq. (66) 
IS contmuous for th~se values of <0' Hence, the bounds given by 
Eq. (67) can be obtamed by passage to the limit in Eq. (66). 
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Analytic Representations of Two-Point Functions with 
Noncanonical Light-Cone Singularities. I 
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We introduce t~e c1as~es ~f anal~t~c functions describing by means of its boundary values the sets of 
c~mmutato~ functIOns with slngularltIe~ il(k)(X2~ and (X2)+~ (k = 1,2, ... ) on the light cone. Their relation 
~Ith the Kallen-Le~ma~m representatIOn having nonintegrable spectral functions is given. The general­
IZed wave-re~~r~alIzatIon constant~, measuring noncanonical singularities, are introduced. The 
formul~s eX~I~lt In a clear way the light-cone behavior and provide a proper scheme for studying the 
equal-time limits. 

1. INTRODUCTION 

The interaction modifies the canonical light-cone 
singularity of free two-point functions. This modi­
fication is described formally by the wave-renormali­
zation constant Z3'l. Such description, however, 
becomes mathematically meaningless if Z31 is infinite. 
Treating the results of perturbation theory as a guide, 
one should expect that Z3'l in all four-dimensional 
nontrivial examples of interacting local fields is 
infinite, and it is necessary to look for another method 
of describing the short-distance behavior of two-point 
functions. 

The renormalization factor Z3'l describes the modi­
fication of the free field functions. New approach 
should therefore introduce the methods of description 
of short-distance singularities without any reference 
to the free field solutions. In this paper we introduce a 
class of analytic functions, constructed in accordance 
with the analytic properties of VEV in the Wightman 
scheme} These functions, similarly as in KaIIen­
Lehmann spectral formulas ,can be used for construc­
tion of spectral representation with integrable spectral 
functions, describing two-point functions with non­
canonical singularities. 

Using the boundary prescriptionsl - 3 one can relate 
our analytic functions with the two-point functions 
characterized by some standard nonintegrable Kallen­
Lehmann spectral functions. Some particular ex­
amples of such two-point functions have been studied 
in the framework of distribution theory by Steinmann ,4 

Guttinger,5 Pfaffelhuber, 6 Rieckers and Guttinger7, 

1 A. S. Wightman, Phys. Rev. 101, 860 (1956). 
2 R. F. Streater and A. S. Wightman, PCT, Spin, Statistics and 

All That (W. A. Benjamin, Inc., New York, 1965). 
3 G. Kallen, in Proceedings of the MIT Conference on the Mathe· 

matical Theory of Elementary Particles, September 1965 (MIT Press, 
Cambridge, 1966). 

• O. Steinmann, J. Math. Phys,-4, 583 (1963). 
• W. Guttinger, Fortschr. Physik 14, 483 (1966). 
6 E. Pfaffelhuber, University of Munich thesis, 1966. 
7 A. Rieckers and W. Guttinger, Commun. Math. Phys. 7, 190 

(1968). 

and Vladimirov. 8 In this paper we introduce larger 
classes of such functions, sufficient for introduction 
of the spectral decompositions of any commutator 
function having the singularities b(k)(X2) and (X2)+k 
(k = I, 2, ... ), and we use the tools of the theory of 
analytic functions, that make all operations unique 
and well defined. (It has to be mentioned, however, 
that not all problems of Lorentz-invariant distributions 
can be solved by such approach. In a full treatment of 
Lorentz-invariant distributions the analytic methods 
have to be supplemented with the discussion of so­
called Garding ;mapping9 of invariant four-dimen­
sional distributions and the discussion of inverse 
Garding mapping. For an extensive treatment of these 
mappings see Ref. 7.) 

In recent years one of the most fashionable subjects 
in axiomatic field theory is the study of inequivalent 
representations of canonical commutation rela­
tions}o.l1 It has to be stressed, however, that such a 
method is justified if the wave-renormalization con­
stant Z3'l is finite. I n relativistic quantum field theory, 
therefore, one cannot escape from the conclusion 
that the interaction modifies the algebraic structure of 
the equal-time limits. Because the correct way of 
calculating the equal-time limit leads to one-to-one 
correspondence between the equal-time singularities 
and the singularities of the four-dimensional com­
mutator function on the light cone, we conclude that 
the study of light-cone singularities for at least the 
lowest Green's functions represents a program of 
classification of interactions in the Wightman scheme. 
(The best example is provided by the free field case 
where the delta singularity on the light cone implies 
the canonical commutation relations. The argument 

8 V. S. Vladimirov, Methods of the Theory of Analytic Functions of 
Several Complex Variables (Nauka, Moscow, 1964) (in Russian). 

• L. Garding, Nuovo Cimento Supp!. 14,45 (1959). 
10 M. Guenin, Lectures at the Boulder 1966 Summer Institute 

(Gordon and Breach Science Publishers, New York, 1968). 
11 A. S. Wightman, review talk at Rochester Conference on the 

Theory of Fields and Particles, August 1967. 
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can be extended also to large class of other light-cone 
singularities. The ambiguity consisting of the presence 
of distributions with support x = 0 is nonphysical.) 
In this paper we discuss the two-point functions; the 
case of three-point function will be treated in another 
publication. 

In this paper we discuss only the example of scalar 
neutral Wightman field, but the results can be easily 
extended to the nonscalar fields. Particularly interest­
ing is the case of vector field, because of recent 
discussions about the validity of current-algebra 
assumptions in the general framework of relativistic 
quantum field theory. In our considerations we assume 
that only the ultraviolet divergences are present, i.e., 
the Kallen-Lehmann spectral function is locally 
integrable. It is interesting to mention that the infrared 
divergences can be excluded formally by means of the 
Wightman postulate of positiveness of metric in the 
space of states.12 

The analytic representations, describing commutator 
functions with the singularities ~(k)(X2) (k = 0, I, 
2, ... ) and (X2)+1 (/ = 1,2, ... ) and depending on the 
continuous parameter m analogous to the mass vari­
able in the free field case, are introduced in Sec. 2. 
In Sec. 3 we present the connection between some 
standard nonintegrable spectral functions and our 
analytic representations. In Sec. 4 we introduce the 
numerical parameters-wave-renormalization con­
stants, unrenormalized mass and generalized wave­
renormalization constants-as characteristics of the 
light-cone singularity. In the last section some general 
remarks about the noncanonical singularities are given. 

2. THE CLASSES OF ANALYTIC REPRESENTA­
TIONS OF NONCANONICAL TWO-POINT 

FUNCTIONS 

In the Wightman formalism, all two-point functions 
(two-point VEV, commutator functions, causal propa­
gator, etc.) are the distribution-valued boundary 
values of an analytic function G(Z2) (Z2 = z/Jz/J, 
z/J = xl' + iYIl),1-3 holomorphic in a whole complex 
Z2 plane (Z2 = s + iu) except the points along the 
positive real axis (u = 0; s ~ 0). Such an analytic 
function G(Z2) is characterized by its discontinuity 
across the cut 

~(s) = (27Ti)-1{G(S + iO) - G(s - iO)}. (2.1) 

[The distributions as boundary values of analytic 
functions are extensively discussed in Refs. 5, 8, and 
13-15. The analytic function G(Z2) is called an analytic 

12 D. A. Dubin and J. Tarski, J. Math. Phys. 7, 574 (1966). 
13 H. J. Bremermann and L. Durand, J. Math. Phys. 2, 240 (1961). 
14 H. J. Bremermann, Distributions, Complex Variables and 

Fourier Transforms (Addison-Wesley Pub!. Co., Reading, Mass.,1965). 
16 F. Constantinescu, Commun. Math. Phys. 7,225 (1968). 

representation, generating the distribution ~(s). For a 
large class of distributions ~(s) one can write for G(Z2) 
a Cauchy representation, leading to dispersion rela­
tions in coordinate space.16 •17] 

Using the boundary prescriptions for the two­
point VEVI one gets the following formula for the 
commutator function: 

G(x) = i (01 [fJ?(xj2), fJ?( -xj2)] 10) 

= 27TE(XO)~(X2). (2.2) 

Because the commutator function is a tempered distri­
bution, we see that 

(2.3) 

and ~(X2) should be real. This last condition implies 
that one can write 

(2.4) 

where G(Z2) has a real discontinuity (2.1) and satisfies 
the condition 

(2.5) 

The function F(Z2) is an entire function in Z2 complex 
plane. One can say that the function G(Z2) determines 
the algebraic structure of the theory and F(Z2) depends 
only on the representation. [This determination is, of 
course, a partial one. Only tor generalized free field, 
G(Z2) determines the algebraic structure completely.] 
Finally, using the temperedness assumption for the 
.two-point VEV we see that the function G(s ± iO) 
should be bounded for large positive as well as negative 
values of s by a polynomial. 

The example of an analytic function, satisfying all 
requirements mentioned above is provided by the 
analytic continuation of free field VEV, defined as 
follows: 

The discontinuity (2.1) along the positive real axis is 
described by the function [the analytic representation 
of b(s) is _(Z2)-1 and O(s) is generated by -In (-Z2) 
(see Refs. 5 and 13)]: 

~(s; m2
) = 4~2 {b(S) _ O(s) ~2 J l~~;')}, (2.7) 

where s = ;'2 and the light-cone behavior i!. deter­
mined by the singularity of Go(Z2; m2) near the 

16 A. E. Szabat, Tr. Fiz. Inst. Akad. Nauk SSSR 29, 151 (1965). 
17 J. Lukierski, Lecture at the 5th Winter School of Theoretical 

Physics, February 1968, University of Wroclaw preprint No. 169 
to be published in Proceedings of 5th Winter School, Wroclaw 
University Press. 
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point z = 0: 

GO(Z2; m2
) = - 1.- \ + less singular terms. (2.8) 

417 z 

We see that the light-cone singularity is mass­
independent, and because it leads to the canonical 
commutation relations it will be called a canonical 
singularity. The interacting fields have, however, 
different singularities on the light cone. In the follow­
ing we shall assume that the only singular point for the 
distribution (2.1) is the light cone s = 0 and that the 
distribution Hs) for large s is described by a real 
function, satisfying the condition 

1~(s)1 < A/s!. (2.9) 

The first requirement means that the main part of the 
perturbation propagates without delay along the light 
cone and the relation (2.9) determines the asymptotic 
behavior of the action with very large delay time. 
[The value ! of the inverse power in (2.9) can be 
justified by the requirement of positive-definiteness of 
the metric in the space of physical states.] 

We shall consider in this paper the following two 
classes of light-cone singularities: 

~is) = t5(k)(S), k = 0, 1,2, .. " (2.10a) 
and 

~!(s) = s+!, 1= 1,2,3, .... (2. lOb) 

The results can be generalized also to more general 
cases, particularly to the case when I is a continuous 
index. 

A. /5(k)(S) (k = 0, 1,2, ... ) 

The simplest generalization of the formula (2.6) is to 
introduce other Hankel functions of the first kind with 
the argument mz. It can be easily shown that only such 
combination of Bessel functions and Neumann 
functions satisfy the temperedness assumption for 
spacelike distances (Z2 negative, 1m z real and positive). 
We introduce the following family of analytic func­
tions which can be used for the description of the 
analytically continued VEV: 

Gn(Z2; m
2
) = (d~2rGO<Z2; m2

). (2.11) 

U sing the formula 

(2.12) 

one gets the following result: 

G (Z2. m2) _ __ _ n+l 
(_I)n(m)n+1 H(l) (mz) 

n' - 417i 2 (mzt+1' 
(2.13) 

Using the expression for the Hankel function H~l)(mz), 
one gets 

Gn_ 1(Z2; m2) 

= -- - [2y -ln4 + In (_m2z2
)] (-It(m2)n{ 

4172 2 

J n(mz) 1 ~l an;k 1 ~ 2k} 
x -( )n - - £.. ( )2(n-k) - - £.. bn;imz) 

mz 17 k=O mz 17 k=O 

(2.14) 
where y = 0.577 (Euler constant) and where 

2n- 2k (n - k - I)! 
an;k = k!' 

b _ (_I)k Ck+n + Cn 
n;k - 2n+2k k! (k + n)! ' 

1 
C. = 1 + t + ... + -, Co = 0, 

S 

(2.15) 

and the relation In (-m2z2) = 2 In mz + il7 has been 
used. We obtain the following discontinuity: 

~n_l(S; m2
) 

= ~ {Gn_1(s + iO; m2
) - Gn_1(s - iO; m2

)} 
2m 

1 n-l ( l)k 2k 
= - I ~ ~ t5(n-k-l)(s) 

4172 k=O 4k k! 

+ (_ m2)n O(s) J n(mJ.) . 
2 4172 (mAt 

(2.16) 

The leading light-cone singularity is mass-inde­
pendent and equal to (1/4172)t5(n) (s). Putting m = 0, 
one gets . 

(2.17) 

leading to the result obtained in Refs. 5-8: 

(2.18) 

The formula (2.11) can be easily generalized. We 
introduce 

(2.19) 

where -n ~ r ~ n. The leading singularity on the 
light cone for ~n;r(s; m2) is independent on m2 and 
proportional to t5(n-,,(s). One gets particularly inter­
esting class by the following choice: 

G . (Z2. m2) = _ _ 1_(m2)k H~i)(mz) 
2k-l.k-l' 417i 4 Z2' 

k = 1,2,3, .. " (2.20) 
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with leading singularity on the light cone described by 
the limit m2 

- 0: 
2 1 (2k - 3)! 

G21<-1:1<-1(Z ; 0) = 47T2 (Z2)k+1 . (2.21) 

It will be seen in Sec. 3 that the functions (2.20) corre­
spond to the case of polynomial behavior of the 
Klillen-Lehmann spectral function. 

B. S+I (l = 1, 2, ... ) 

In order to describe the singularities (2.10b) for 
I = 1 we introduce the following analytic function: 

G
- (2. 2) __ 1_ H~1)(mz) 

1 z ,m - . 2 • 
47Tl Z 

(2.22) 

[It can be mentioned that one obtains (2.22) from 
(2.19) by putting n = 0, r = -2.] 

Using the formula 

H~1)(mz) = i [y + tin (_m2z2) - In 2]Jo(mz) 
7T 

2i 00 (_l}n 
+ - 2-- J 2n(mz), (2.23) 

7T n=l n 

one gets 

£'1(5; m2) = (27Tir1{O'1(s + iO; m2) - 0'1(5 - iO; m2)} 

= (47T2r1S:;:1Jo(mA) 

- (47T2)-1(ln m2 
- 2y + In 4)r5(s). (2.24) 

We see that the function (2.19) does not allow us to 
perform the limit m2 

- O. The logarithmic term, 
which becomes infinite with vanishing m2 , occurs in the 
solutions of derivative-coupling models in two 
dimensions18 •19 and four dimensions.2o •21 In order to 
get only the singularity S:;:l one should subtract the 
following "counterterm" from the function (2.19): 

(2.25) 

where the mass f-t2 is, in the general case, not related to 
the mass m2 and, particularly, can be chosen equal to 
zero. 

In order to get the singularities (2.lOb) with 1= 
I, 2, 3, .. " one should introduce the following ana­
lytic functions: 

O'(Z2. m2) = - 0' (Z2. m2) 
( 

d )1-1 
I, dz2 1, . (2.26) 

18 B. Schroer, Fortschr. Physik 11, 1 (I963). 
19 A. S. Wightman, Lecture notes at Cargese Summer School, 

1964 (published in Russian in 1968). 
20 J. Lukierski, Bull. Acad. Polon. Sci. 16,219 (1968). 
21 J. Lukierski, Lecture at Varna Seminar on Elementary Particles, 

May 1968, University of Wroclaw preprint No. 167. 

Using the formula 

(~)n H~1)(Z) = (-It H~1)(Z) , 
z dz zn 

(2.27) 

one gets 

G (Z2. m2) = _1_ (_1)1-1 (l - I)! 
I' 47Ti (Z2)1 

x I l.(mz)nH~l)(mZ). (2.28) 
n=O n! 2 

The formula (2.28) implies the following leading light­
cone singularities: 

£'z(s; m2
) 

= (47T2)-1( -1 )1-1(l - I)! S:;:I 

- (47T2r1{ln m2 + 2(y - In 2) + CI_ 1Wl-l)(s) 

+ O(S~!+1). (2.29) 

Introducing suitable counterterms [compare with 
(2.25)] one can cancel out all terms with delta 
functions. 

Another way of introducing the light-cone singu­
larities of type (2. lOb ) is to multiply the functions 
Gn(Z2; m2) by the function In (-Z2). Let us consider, 
for example, 

G~n(z2; m2
) = In (-Z2)GO(Z2; m2). (2.30) 

The discontinuity of (2.30) is given by the formula 

Cln(. 2) = _1_ { -1 _ 1 m
2 

J 1(mA)} (2 31) 
"-0 s, m 2 s+ n s+ ., 

47T 2 rnA 

The differentiation of (2.30) with respect to Z2 leads to 
analytic functions with the discontinuity ~(s) having 
singularities only of the type (2.1 Ob). 

3. THE ANALYTIC REPRESENTATION AND 
NONINTEGRABLE KALLEN-LEHMANN 

SPECTRAL FUNCTIONS 

The two-point functions are usually described by 
means of the spectral function p(K2) which represents 
a Lorentz-invariant four-dimensional Fourier trans­
form of the distribution ~(X2). In this section we shall 
find the analytic representations corresponding to 
some standard choices of nonintegrable spectral 
functions. 

Let us write the Kallen-Lehmann spectral repre­
sentation in complex coordinate space 

G(z2) = Loo p(K2)Go(Z2; K2) dK2. (3.1) 

We consider (3.1) for Z2 off the real axis, i.e., for 
z = A + in where z lies in upper half-plane (n > 0). 
The function GO(Z2; K2) behaves for large K like 
e-K~ and the integral exists for all locally integrable 
p(K2) C S'(R+). 
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Now we introduce the following operator, acting on 
complex variables z,.: 

~ ~ f(z2)D~ D.J(z2) = _4(~)2[z2f(z2)]. (3.2) 
iJz,. iJz/l dz2 

Using the identity 

zC~JzHil)(mz) + m2Hi1 )(mz) = 0, (3.3) 

one gets 

and 

D~G(z2) = La)(K2)Zp(K2)GO(Z2; K2) dK2. (3.5) 

Using the formula (3.5) one can always relate the 
spectral function p(K2) which is locally integrahle and 
belongs to S'(~) with a function having a Hankel 
transform on the real axis. We introduce, in general, 
for 'YJ > 0: 

g(z) = (a) g(K)Hill(KZ)(KZ)l dK. (3.6) • Jo 
If g(K) c L1(0, (0), the transform (3.6) necessarily 
exists also if 'YJ = 0.22 Using (2.6) and (3.6) one can 
write (3.1) as follows: 

G(Z2) = (47Tizi )-lg(Z), (3.7) 

A. p(/(2) = O(/(2 - m2)(/(2)k (k = 0, 1,2, ... and 
k = -1) 

Let us consider first k = -1. From (3.8) it follows 
that one should find the Hankel transform (3.6) with 
g(K) = O(K - m)K-!. One gets23 

We see, therefore, that the analytic function (2.22) 
describes the two-point functions characterized by the 
logarithmically divergent wave-renormalization con­
stant. Because 

(3.11) 

it is clear the origin of the term In m2 in (2.24), 
describing the infrared divergence of the wave-renor­
malization constant. 

One gets the results for k = 0, I, . " using the 
relation (3.5). We have 

.1.k(Z2; m2) = L:dK2(K2)kGo(Z2; K2) = D~+1.1._1(Z2; m2). 

Using the formula 
(3.12) 

o == _4z2 - - 8-( 
d )2 d 

o dz2 dz2' 

where one gets for the most interesting cases k = 0 and 
(3.8) k = 1: 

Our method of determining the analytic representation 
for nonintegrable spectral functions is based on the 
following two steps: 

(a) We take from the tables of integral transforms 
(see, for example, Ref. 23) the Hankel transform 
(3.6) for 

where n is chosen sufficiently large. 
(b) We use the formula (3.5). 
We see, therefore, that every spectral function with 

g(K) having the real Hankel transform (3.6) generates 
the family of analytic representations for all two-point 
functions with the spectral functions of the form 
g(K)(K2)n. 

We shall consider below two such families. 

II E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals 
(Oxford University Press, London, 1937). 

.3 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
Tables of Integral Transforms (McGraw-Hili Book Co., New York, 
1954), Vol. 2. 

(3.13a) 

and 

(3. 13 b) 

We see that for k = -1 and k = 0 we obtained up to 
some constant factor the analytic functions (2.20). 
For k ~ lone gets also some additional terms pro­
portional to the functions Gk+1;o(mz), Gk+2;1(mz), ... , 
G2k-k_l(mz). All these functions contribute to the 
leading light-cone singularity, which can be obtained 
if m ->- O. For example, for k = 1 we get, using the 
formula 

that 

A ( 2 8 1 u z '0) =--
1, 7T2 Z4 

(3.14) 

and both terms in (3.13b) contribute to result (3.14). 
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B. p(K2) = O(K2 - m2)(K2)k 10 K2 (k = -1,0, + 1,"') 

First we consider the case k = -1. One gets after 
somewhat tricky calculations the following estimate 
at z = 0: 

AIog(2. 2) __ 1_1
W

101(2 H (I)( )( )ld 
U_I Z ,m - .! 1 1 I(Z KZ I( 

41T1Z m I( 

(3.15) 

and the discontinuity (2.1) has a following 1eadiog 
singularity: 

~~f (s; m2) = (3/81T) J.l S • S:;:1 + 0(S:;:1). (3.16) 

(A complete formula for 6.~f will be given in the 
second part of this paper.) Applying the operator 
(3.2), one gets 

6.~Og (Z2; m2) 

= Jm~(1(2lln 1(2GO(Z2; 1(2) dl(2 

= (_I)k. 3 . 4k-1(k!)2(k + 1) In Z2 + 0(_1_) 
1T2( Z2)k+2 Z2(k+2) 

(3.17) 

and one can check easily that the leading singularity is 
of type (2.10b). 

Finally, it should be stressed that, even when 

J p(/(2)1(! dK2 < 00 (3.18) 

which assures that the Hankel transform (3.6) exists 
for'i} = 0, the function Go(Z2; K2) cannot be expanded 
under the integral into the powers series, because the 
coefficients of consecutive powers will not exist. If we, 
nevertheless, use such a method, it is easy to see that 
the differentiation (3.5) will not produce any non­
canonical singularities. Indeed, the terms occurring in 
power expansion of GO(Z2; m2) are Z-2, In Z2(Z2)\ 
(k = 0,1, ... ), and (Z2)k. Because 

D zz-2 = 0, 
Dz(z2)k = -4k(k + 1)(Z2)k-J, 

Dz In Z2(Z2)k = -4{k(Z2)k-l + 2(k + 1)(z2)"' (3.19) 

+ k(k + I) In Z2(Z2)k-l}, 

the differentiation (3.5) will again reproduce only the 
terms occurring in GO(Z2; m2). We see, therefore, that 
noncanonical terms can be easily lost if we use unjusti­
fied mathematics. 

4. REMARKS ABOUT THE RENORMALIZATION 
PROCEDURE 

It has been mentioned in the introduction that the 
wave-renormalization constant measure the modi-

fication of free field singularities. One introduces 
the cutoff-dependent wave-renormalization constant 
Z;-I(A2), where 

Z;-\N) = LA
'p(1(2) dK2, (4.1) 

and one studies the limit 

Z;-1 = lim Za\N). (4.2) 
A 2-+ 00 

Different types of infinities correspond to different 
types of noncanonical singularities. 

The wave-renormalization constant can be, how­
ever, defined by means of the analytic representation 
G(Z2) as follows: 

Z
-1 I' G(Z2) 
3 = lm--, 

."->0 GO(Z2) 
(4.3) 

where the function GO(Z2) can be characterized by any 
mass. Similarly, one can introduce the unrenormalized 
mass parameter m~ by means of the following limit: 

m~ = lim DG(z2) . 
z2_ 0 Go(Z2) 

(4.4) 

It is easy to see that for the free field G(Z2) = 
GO(Z2; m2

) one gets m~ = m2 and in the general case 

(4.5) 

These two characteristjcs of light-cone singularities 
come out from the comparison with the free field case. 
It is possible, however, to introduce generalized wave­
renormalization constants Z3;; describing the light­
cone singularity compared with the singularities of 
the analytic functions G,,(Z2; m2) for Z2 -->- O. 

We define particularly, Z3;~ == Za1, 

Z;;:~ = lim G(Z2) , n = 0, 1,2, . . . . (4.6) 
."-0 Gn(Z2) 

It follows from the postulate of positive metric in the 
space of physical states that Z3:~ ~ l. If Z3:~ = 00, it 
can be found, however, for all such n, that Z3:; < 00. 

5. CONCLUSIONS 

In this paper we have introduced a new class of basic 
two-point functions describing noncanonical two­
body forces, more. singular in static approximation 
than the Yukawa term. This modification of the l/r 
singularity is caused by the exchange of infinite number 
of quanta with very large momenta. In the usual 
approach, such a process leads to ultraviolet diver­
gences and the necessity of infinite renormalization. 
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In our approach we introduce some objects, charac­
terized by the continuous mass spectrum and formed 
out of infinite number of quanta. These objects are 
chosen in such a way that the "one-particle exchange" 
approximates in a correct way the short-distance 
singularity for complete two-body forces. (In Ref. 
24 the free field with polynomial spectral functions 
have been called the "inverse multipole field.") 

The presence of noncanonical forces modifies the 
interaction at very small distances in such a way that 
the notion of charge and mass for these distances are 
not valid. Indeed, the charge and mass can be defined 
only under the assumption that the interaction has in 
static approximation the Yukawa form. One defines 
the unrenormalized parameters as follows: 

e~ = lim V(r)r, (5.1) 
r .... O 

m~ = lim 0
2

2 
[V(r)r]. 

r .... O or (5.2) 

The formulas (5.1) and (5.2) give infinite results be­
cause the Yukawa law for very small [we call them 
submicroscopic (see Ref. 17, Sec. 5)] distances is 
modified. 

If we consider two-body forces we can always 
split them into two parts: with Ijr singularity (canoni­
cal terms) and with the singularity stronger than l/r 
(noncanonical terms). The submicroscopic distances 
are defined by the requirement that the effects of 
noncanonical terms cannot be neglected. The validity 
of perturbation expansion is strictly connected with 
the neglecting of physical importance of noncanonical 
terms and cannot be used for submicroscopic distances. 
Using first orders of the perturbation theory one can 
guess, however, that the submicroscopic distances 

24 J. Lukierski, Nuovo Cimento 49, 312 (1967). 

in QED are indeed beyond the range of physical 
measurements. One can caJculatel 7.25 that the non­
canonical terms, occurring in the second order of per­
turbation theory in QED, can be neglected if 

(5.3) 

where Me denotes the electron mass and A = Ija 
describes the cutoff parameter corresponding to the 
penetration distance a. Using the value 

IX = e2 j47Tr--I Ij137, 
one obtains 

In (Aj Me) « 1000. (5.4) 

We see easily from (5.4) that it is not possible to 
detect by scattering experiments the modificationofthe 
Coulomb-law singularity and, particularly, the Pauli­
Villars regularization procedure, removing nbncanoni­
cal terms, can be used. (For the demonstration how 
the regularization procedure removes noncanonical 
terms see Refs. 26, 27.) To the contrary, it is easy to 
check that the estimate for strong interactions leads 
to the range of submicroscopic distances over lapping 
with the values of scattering parameters in present 
high energy experiments. We see, therefore, that the 
conventional perturbation expansion cannot be used 
and some other approximations, using, perhaps, the 
propagators introduced in this paper, should be 
developed. 
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Necessary and sufficient conditions are formulated for deciding whether a set of 2n - 1 bilinear prod­
ucts of n complex amplitudes determines these amplitudes with no continuum of ambiguity or not. The 
conditions can be translated into very simple geometrical prescriptions which in most cases provide quick 
and easy practical tests for such decisions. 

I. MOTIVATION 

In any quantum-mechanical system, the experi­
mentally measurable quantities are bilinear in the 
amplitudes. On the other hand, theories of quantum­
mechanical phenomena almost always predict the 
amplitudes themselves. From them, it is generally 
easy to compute the experimental observables and, 
thus, comparison between experiment and theory 
can be made at the level of these observables. On the 
other hand, when a reliable theory is missing and the 
task is to present the mass of experimental informa­
tion in a form which is optimally economical and 
most suitable for quick comparison with theories to 
come, the obvious choice for such a form is the 
amplitudes themselves. In that case, one has to face 
the problem of determining the amplitudes from the 
measured bilinear combinations. 

In particular, in elementary particle physics, one 
would like to be able to determine experimentally 
the amplitudes in the S matrix of a particle reaction. 
At low energies, a partial wave decomposition is 
often used, but, in general, the task is to determine 
the various invariant amplitudes from the measured 
cross sections, polarizations, spin correlations, and 
other observables. Although, with experiments at 
ever higher energies and the development of tech­
niques for sophisticated measurements of spinwise 
complicated observables, this problem is becoming 
more and more central, it has not been solved in 
other than a few special cases. 

The problem has several parts, some purely 
mathematical in nature, others also involving the 
physical relationship between observables and ampli­
tudes. In the present paper we will consider one 
purely mathematical part of this problem. It is 
probably the least straightforward part, since it 
involves the analysis of the bilinear nature of 
the relationship between amplitudes and observ­
abIes. 

• Work supported by the U.S. Atomic Energy Commission. 

II. THE PROBLEM 

The question can be posed quite simply. 
We have n complex amplitudes ai (i = 1, ... ,n), 

with one over-all phase arbitrary. We then consider 
the n2 bilinear products of these amplitudes. They 
will be referred to as bits, and will be either lai l2 

(denoted by Qi), or Re aia: (denoted by Rii), or 
1m aia: (denoted by If). The number of Q/s is n, and 
the numbers of Rij and If (for i < j) each is in(n - I). 
(Note that Rii = R i ; and I} = -I~.) 

The problem we want to solve is the description 
of the properties of those sets of bits from which the 
amplitudes can be determined unambiguously. In 
particular, if we start with just a few bits, there will be 
a continuum of sets of amplitudes which yield those 
bits. As we increase the number of bits, the extent of 
the ambiguity decreases. At some point, there will 
cease to be a continuum of solutions for the ampli­
tudes, although there might still exist a finite, discrete 
ambiguity. With the addition of further bits those 
ambiguities can also be eliminated. 

In this paper we will give necessary and sufficient 
conditions for a set of bits to determine the amplitudes 
with no continuum of ambiguity. The problem is 
equivalent to finding a set of 2n - 1 functionally 
independent bits. 

III. THE RESULTS 

It is very helpful to introduce, in order to facilitate 
the bookkeeping, a geometrical analogy to our bits 
and amplitudes. We will denote each amplitude by a 
point and each bit by a line connecting the corre­
sponding amplitudes. Thus, Qi will be denoted by a 
loop starting from and returning to the point i, while 
Ri ; will be represented by a solid line connecting the 
points i and j. Similarly, I~ will be represented by a 
dashed line connecting i and j. (See Fig. 1.) In this 
notation, for example, the three amplitudes with 
Ql, Q2' R12 , l~, and I~ given would form a pattern 
like the last one in the second row of Fig. 2. 

925 
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n = o 
n=2 

0-----0 

0- --
FIG. 1. Amplitude-bit patterns for one and two amplitudes. 

All of these diagrams determine the amplitudes with no continuum 
of ambiguity. 

A procedure for testing for a continuum of ambigu­
ities should be described by referring to an example. 
Take three amplitudes aI, a2, and aa and assume that 
QI' Q2' R12 , I~, and I~ are given. With this informa­
tion, is there a continuum of ambiguity in the three 
amplitudes? Denote Re ai by Ui , 1m a i by Wi' and 
assume that we make the transformation U i ---->- U i + 
!1ui , Wi ---->- Wi + !1wi • Since one of the three ampli­
tudes can be taken to be real, choose al real or WI = 0. 
Then from QI we have !1UI = 0, from R12 we obtain 
!1U2 = 0, and from Q2 we get !1W2 = 0, while I~ 
gives !1wa = 0. Finally, I~ yields !1ua = 0, thus showing 
that it is not possible to move away from 'a solution 
for aI, a2 , and aa if QI, Q2' R12 , I~, and I~ are given. 
There are, of course, a number of equivalent pro­
cedures. 

Definition: We say a set of bits belongs to a set of 
amplitudes if the bits have only those subscripts 
and superscripts which appear on the amplitudes 
(i.e., the bilinear combinations contain only members 
of that set). 

Example: The bit set {QI, Qa, R 12 , R 23 , In belongs 
to the amplitude set {aI' a2 , a3}' On the other hand, 
the bit set {QI' R12 , R34 , ID does not belong to the 
amplitude set {aI' a2, aa} because of the presence 
of R34 • 

Theorem 1: n amplitudes are determined up to an 
over-all arbitrary phase factor, with no continuum of 
ambiguity, by a set of 2n - 1 bits only if this set is 
such that the bit subset belonging to any subset of k 
amplitudes (k = 1, ... ,n) contains no more than 
2k - 1 bits. This condition will be referred to as 
condition A. 

A­
I \ 

I \ 
I \ 

I \ 

CY () 

FIG. 2. Amplitude-bit patterns for three amplitudes, All of these 
diagrams determine the amplitudes with no continuum of ambigu­
ity, except the first one in the first row and the first one in the 
third row. Only about half of the patterns are depicted; the rest 
can be obtained from these by interchanging solid and dashed 
lines. 

Proof' It is equivalent to show that when the con­
dition A is not satisfied, the set of n amplitudes will 
not be determined up to an over-all arbitrary phase 
factor with no continuum of ambiguity. Consider a 
set of n amplitudes with a subset of k amplitudes 
having m bits belonging to this subset and m > 2k - 1. 
Since these m bits are functions of the 2k - 1 vari­
ables,! Ui and Wi of the k amplitudes, m > 2k - 1 
implies that the m bits are not mutually functionally 
independent. It follows that the set of 2n - 1 bits 
is not a functionally independent set. But we know 
that n amplitudes are determinbd up to an over-all 
arbitrary phase factor with no continuum of ambigu­
ity by a set of 2n - 1 bits if and only if this set is a 
functionally independent set of bits belonging to the 
n amplitudes. Q.E.D. 

Theorem 2: The condition A is necessary and suffi­
cient for the case where the set of 2n - 1 bits has a 
geometrical representation which can be constructed 
from a "good" diagram by the successive addition of a 
point and two bits. 

1 There are 2k - 1 and not 2k variables because the over-all phase 
factor is arbitrary and so we can set one amplitude to be real without 
loss of generality. 
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By a "good" diagram we mean a geometrical 
representation of a set of bits which will yield solu­
tions with no continuum of ambiguity for the set of 
amplitudes it belongs to. 

Proof" Consider a diagram of n points constructed 
by the successive addition of r points to a "good" 
diagram containing s points (n = r + s). We shall 
use induction on r. 

Obviously the theorem is true for r = O. Let us 
assume that the theorem holds for the successive 
addition of r - I points, making a diagram of 
n - 1 points. Let us add then one more point, and 
correspondingly two more bits. These two bits can be 
added in three different ways. They can both connect 
two of the old, n - 1 points. In this case, these 
n - 1 amplitudes will have more than 2n - 3 bits 
belonging to them. On the other hand, in that case 
the nth amplitude is completely undetermined. The 
second possibility is that one of the new bits connects 
two old points, and the other the new point with an 
old one. In this case, the n - 1 old points will have 
2n - 2 bits belonging to them, and, on the other 
hand, the new point will still have a continuum of 
ambiguity since only one bit will tie down its real and 
imaginary parts. Thus, so far our theorem is satisfied. 
Finally, the third possibility is that both new bits 
connect some old point and the new point (or one of 
them can be Qi for the new point). In that case no 
subset of points will have more than 2k - 1 bits 
belonging to it, but on the other hand the new point 
will be fixed with no continuum of ambiguity by the 
two new bits connecting with it. Q.E.D. 

Observe that, in the proofs of Theorems 1 and 2, 
knowledge of the particular functional forms of the 
bits is not required. It follows that the theorems are true 
for a much larger class of functions than the bilinear 
type of relationship considered in the present context. 

The condition A would be a sufficient condition in 
general as well if there were no relations among the bits 
inherent to the particular functional forms of the bits. 

We shall state here another necessary condition, 
which arises from the particular functional forms of 
the bits. 

Theorem 3: A loopless diagram is "good" only if 
for each point there exists a path whereby it is possible 
to return to the same point after traversing an odd 
number of bits.2 This condition will be called con­
dition B. 

• M. J. Moravcsik, Experimental Restrictions in the Determina­
tion of Invariant Amplitudes, Phys. Rev. 170, 1440 (1968). Second 
category, situation E. 

FIG. 3. An amplitude-bit pattern which, if it appears inside a 
larger pattern, is evidence for a continuum of ambiguity. For 
details, see the text. 

Theorems 2 and 3 are not criteria of most general 
applicability but nevertheless they are simple and 
easy to apply. 

There are a number of obvious ways of having a 
continuum of ambiguities for n amplitudes with 
2n - 1 bits, which are all special cases of these 
theorems. For instance, if the pattern consists of two 
or more disconnected subpatterns, the relative phases 
of these subsets are undetermined. In that case, one 
of these subsets (populations k i and! k i = n) must 

i 

have more than 2ki - 1 bits (since the sum of the 
numbers of bits in the subsets is 2n - 1). If the pattern 
contains a one-legged terminal (i.e., a loopless point 
which is attached to the rest of the diagram by only 
one line), it clearly contains a continuum of ambiguity 
since the point at the end of this terminal has only 
one bit to tie down its real and imaginary parts. But 
then the remaining n - I points have 2n - 2 bits 
belonging to them. Finally, the appearance of the 
subpattern shown in Fig. 3 clearly exhibits one 
superfluous bit and this is a trivial special case of 
Theorem 1. Here the superfluity arises from the 
relationship Q;Qj = (Rij)2 + (JD2. 

IV. A PRESCRIPTION 

We summarize here a practical procedure suggested 
by these results. 

If you want to know whether a certain set of 2n - 1 
bilinear products of n complex amplitudes determines 
these amplitudes (up to run over-all arbitrary phase 
factor) with no continuum of ambiguity or not (i.e., 
whether the set is "good" or "bad"), use the following 
prescription: 

1. Draw n points, representing the n amplitudes. 
2. Draw a line connecting two of the points for 

each bilinear product containing the amplitudes 
corresponding to those points. 

3. Draw a loop starting from and returning to a 
given point for the absolute value squared of an 
amplitude corresponding to that point. 

4. For each subset of the set of n points, count the 
number of lines starting from and ending on members 
of that subset. 

5. If condition A is not satisfied, the diagram can 
be rejected as "bad." If condition A is satisfied, 
for a loopless diagram proceed to 6; otherwise proceed 
to 7. 
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6. If condition B is not satisfied, the diagram can be 
rejected as "bad." If condition B is satisfied, proceed 
to 7. 

7. Use Theorem 2 if applicable. If not applicable, 
proceed to 8. 

8. Write down the Jacobian of the bits with respect 
to the 2n - 1 variables, Ui and Wi of ai • The n ampli­
tudes will be determined up to an over-all arbitrary 
phase factor with no continuum of ambiguity if and 
only if III ;;f O. 

The Jacobian approach to the problem through 
functional dependence remains a most powerful 

JOURNAL OF MATHEMATICAL PHYSICS 

method and provides the only necessary and sufficient 
condition formulated so far. However, the test 
whether III ;;f 0 is tedious. The criteria afforded by 
Theorems 1, 2, and 3 serve to reduce considerably the 
number of cases that need to be subjected to the 
III ;;f 0 test. 
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It is shown that in a very general way two distinct canonical formalisms can be used .to describe a 
classical system. No corresponding nonuniqueness is introduce.d into the canonic~l quantizatIOn procedure 
if the Dirac bracket correspondence to the quantum-mechanIcal commutators IS employed. 

I. INTRODUCTION 

The present paper is an observation concerning an 
aspect of the uniqueness of the canonical formalism. 
A system of differential equations derivable from a 
Hamilton stationary action principle can be con­
verted to a larger system of first-order equations by an 
order-reduction procedure involving the use of 
Legendre transformations active in the velocities. 
This can be managed even when the Lagrangian 
involves time derivatives of the coordinates of 
arbitrary finite order. Furthermore, the form of the 
first-order equations is canonical. 

Restrictions on these procedures have to do with 
the possibility that the equations defining the general­
ized momenta cannot be solved for the velocities. In 
the case that these equations cannot be inverted, a 
Hamiltonian formalism can still be introduced and 
by the same procedures, but it suffers from the defect 
of being nonunique; famous examples in which this 
situation appears are provided by the canonical 
theories of the Schrodinger, Dirac, and Maxwell 
fields. A generalized Hamiltonian dynamics treating 
systems containing constraints (vanishing functions of 

coordinates and momenta) was invented by Dirac1 

to handle such problems as these. 
Tn the usual Hamilton-Jacobi theory a class of 

Hamiltonians is generated from any given one by 
means of canonical transformations, but, owing to the 
canonical invariance of the theory, these all describe 
the same system. The Hamiltonian then possesses 
the uniqueness of the equivalence class modulo the 
canonical group and this is the uniqueness of the 
canonical formalism. Because of their ability to deal 
with canonical constraints, the Dirac techniques allow 
for a more flexible approach to the construction of a 
Hamiltonian theory; one can vary the size of the 
phase space as well as its coordinate system. This can 
be done by varying the choice of active and passive 
variables in the Legendre transformation giving the 
Hamiltonian. 

Consider the example of the Schrodinger field for 
which a Lagrangian (density) is 

112 
I.: = +itl1p*~ - - VVJ*' VVJ - VVJ*VJ. 

2m 
1 P. A. M. Dirac, Belfer Graduate School of Science Monograph 

Series, No.2: Lectures on Quantum Mechanics (Belfer Graduate 
School of Science, Yeshiva University, New York, \964). 
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2m 
1 P. A. M. Dirac, Belfer Graduate School of Science Monograph 

Series, No.2: Lectures on Quantum Mechanics (Belfer Graduate 
School of Science, Yeshiva University, New York, \964). 
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Here one can introduce 7T = oCjo1jJ and 7T* = oC/o1jJ*, 
finding a four-dimensional phase space; or one can 
keep 1jJ* passive, introducing only 7T, and find a two­
dimensional phase space as 1p* can then be eliminated 
in favor of 7T. [n the first procedure one finds two 
second-class constraints, 7T + ili1p* = ° and 7T* = 0, 
and the elimination procedure of Dirac, involving the 
Dirac bracket in place of the Poisson bracket, yields a 
canonical theory the same as that based on the two­
dimensional phase space. The canonical formalism 
based on the Dirac bracket is displaying a kind of 
uniqueness here having to do with the fact that its use 
corresponds to freezing a canonically conjugate pair 
and projecting the system description to a two­
dimensional subspace of the Qriginal phase space. The 
conditions under which Dirac's elimination procedure 
will do this have been given recently by Mukunda 
and Sudarshan.2 

Uniqueness of this kind is actually important for 
the passage to a quantum theory of a given classical 
system, as it is possible to envision formalisms which 
mix up coordinates and their conjugate momenta in a 
way which cannot happen with canonical transforma­
tions on a given space. Consider for example a system 
described by the four independent canonical coordi­
nates ql, q2' PI, and P2; the transformation sending 
these into the set QI = ql, Q2 = PI, PI = q2, P2 = P2 
is not canonical because the Poisson brackets are not 
preserved. [n passing to a quantum theory of such a 
system, the identification of the fundamental classical 
Poisson brackets with the corresponding quantum 
mechanical commutators can never lead to an incon­
sistency involving the uncertainty relation. 

The present paper shows a general and quite 
direct way in which one can always construct two 
equivalent Hamiltonian theories which have the 
property that the conjugate variables q, P of one 
scheme are the independent coordinates of the other. 
But the second theory (we will call it the "stretched" 
theory) has constraints and it will be shown that these 
can always be eliminated by the Dirac procedure. 
Furthermore, while q, P are independent coordinates 
of the stretched theory with respect to the Poisson 
brackets, they are canonically conjugate coordinates 
with respect to the Dirac bracket. 

In Sec. II, after presenting a brief description of 
certain aspects of the Dirac theory, we construct the 
"stretched" formalism and show how the Dirac 
elimination procedure recovers the original canonical 
scheme. The cases where canonical constraints are 
absent and present are both treated. In Sec. II[ we 
give a short summary. 

2 N. Mukundaand E.C. G. Sudarshan, J. Math. Phys.9,411 (1968). 

II. CONSTRUCTION OF FORMALISM 

We consider a system having N degrees of freedom 
represented by the coordinates q which obey equations 
derivable from Hamilton's principle. Lagrange's 
function L = L(q, g) is assumed to be expressible as a 
function of the coordinates q and their velocities g, as 
indicated. The Hamilton formulation results from 
applying Legendre's transformation3 to L(q, g) with 
the q's passive: 

H = Pngn - L(q, g), (1) 

where 

(2) 

and a summation on n is understood in Eq. (1). The 
Hamiltonian can be expressed as a function of the 
q's and p's, as is seen by noting that the most general 
variation of the right side of Eq. (1) is 

. b oL b 
= qn Pn - a qn, 

qn 
(3) 

by Eq. (2). The determination of the most general 
H(q,p) may not be unique, however. For example, it 
may happen that only I of the velocities can be got 
from Eq. (2) with the remaining N - I determinations 
replaced by constraint equations of the form 

CPm(q,p) = 0. (4) 

In this instance, we may proceed in the manner of 
Diracl by introducing the extended Hamiltonian and 
eliminating the second-class constraints by replacing 
the Poisson bracket 

o~ o'Yj o~ o'Yj 
[~,'Yj]p = -- - -- (5) 

oqn 0Pn 0Pn oqn 

with the Dirac bracket 

[~, 'Yj]D = [~, 'Yj]p - [~, IPs]pcss'[IP.', 'Yj]p, (6) 

where {CPs} is an irreducible set of second class con­
straints and the C.s ' are given through 

C •• ' [CPs' , CPs·] = b •••• (7) 

In the absence of constraints, there are no c •• ' and the 
Dirac bracket reduces to the Poisson bracket. 

The cases where constraints of the type given by 
Eq. (4) are present and where they are absent will both 
be treated. We do the latter first. 

3 A quite readable exposition of this beautiful theory may be 
found in C. P. Lanczos, The Variational Principles of Mechanics 
(University of Toronto Press, Toronto, Ontario, Canada, 1949), p. 
161 If. 
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A. No Constraints 

In this case the Hamiltonian is uniquely determined 
and we start from the fact4 that the Hamilton equa­
tions can be found not only from the properties of 
Legendre's transformation but also from a variation 
principle based on the canonical integral. Thus, 
solving Eq. (1), one has 

L(q, g) = Pngn - H(q,p) == r.(q,p; g,p) (8) 

and, since arbitrary variations of p produce no change 
in C, we can replace Hamilton's principle for L(q, g) 
with 

it2 

M[q, p] = 6 dtC(q, p; g,p) = 0, 
tl 

(9) 

the changes of I being generated now by independent 
variations of q's and p's, of the same variety as are 
used in Hamilton's principle, i.e., those for which 
6q, 6p vanish at t1 and t2 and for which [6, d/dt] = O. 

We consider this approach in the light of a 
("stretched") Lagrangian theory and set about con­
structing a Hamilton theory from it by applying a 
Legendre transformation to r.(q, p; g, p). This gives us 
a stretched Hamiltonian 

where 
r n = oC/ogn and Sn = oC/oPn' (11) 

Proceeding as in Eq. (3) and with the same caveat as 
before concerning uniqueness, we see that Je must be 
expressible as a function of the 4N coordinates q, p, 
r, and s. But here we must pay closer attention to 
questions of uniqueness, for constraint equations 
there unavoidably are, and in fact 2N of them. They 
are provided explicitly by Eqs. (11) and (8); one finds 

CP1m = Sm R; 0, (12a) 

CP2m = rm - Pm R; 0, (12b) 

and6 these are primary constraints. Variation of Eq. 
(10) in the presence of the constraints (12) leads to the 
stretched canonical system, 

oJeb . 
-- ~ qn' 
orn 

oJeb . 
---~rn' 

oqn 

where Jeb is given by 

Jeb = Je + U1mCP1m + U2mCP2m 

• Reference 3, p. 168. 

(13) 

• The wavy equals sign """ denotes weak equality in the sense of 
Dirac, Ref. 1. 

and the u's are Lagrange multipliers to Eqs. (11). 
Poisson brackets are now defined with respect to q and 
p as coordinates, and rand s as (respectively) con­
jugate momenta. 

Secondary constraints sometimes arise from the 
consistency conditions ¢m R:i [CPm' Jeb]fj' R:i 0; in the 
present example there are none. (We use script suffixes 
to denote the fact that the brackets are defined with 
respect to the stretched phase space.) One gets instead 

oJe - - + U 2 R; 0 
oPm m , 

(15a) 

(15b) 

which merely serve to determine the u's. Furthermore, 
since 

and 
[CP1m' CP1nlr = 0, 

[CP2m' CP2n]:r = 0, 

(16a) 

(16b) 

(16c) 

all the constraints are second class and in the terminol­
ogy of Ref. 1 the total and extended Hamiltonians are 
the same. Also, using again the notation of Ref. (1), 

Jeb = Jel, (17) 

so the Hamiltonian is uniquely determined by the 
consistency conditions. 

We can get Je, which must be independent of the 
velocities, by combining Eqs. (8) and (10) and using 
Eq. (12); thus, 

Je(qprs) = H(q,p). (18) 

So Eqs. (15) now give 
oJe oJe oH 

U 1m = 'lL1m(qprs) = - - - - = - - , (19a) 
oqm oSm oqm 

oJe oH 
U2m = 'lL2m(qprs) = - = -, (19b) 

oPm 0Pm 

so by Eqs. (14) and (17) we arrive at the unique 
(strong) stretched Hamiltonian, 

oH oH 
Je<tL(qprs) = Jeb = H(q,p) - - Sn + - (rn - Pn)' 

oqn oPn 
(20) 

It may be verified that this satisfies Eqs. (13) when, in 
accord with the consistency conditions, the constraints 
are time-independent. 

The classical system under consideration is equally 
well represented by the canonical formalism based on 
H(q,p), with q and p canonically conjugate, and by 
that based on Je<tL(qprs) where q and p are coordinates 
whose conjugate momenta are rand s. Suppose now 



                                                                                                                                    

HAMILTON-DIRAC THEORY OF HAMILTON'S EQUATIONS 931 

we want to quantize this system. If we adopt the 
procedure based on H(q, p), we will identify the 
canonical commutators with the Poisson brackets. 
We would hope that the quantization based on the 
stretched formalism would result in a theory indis­
tinguishable from that based on H(q, p). But blind 
quantization through the Poisson bracket relations 
would tell us in the one formalism that q and pare 
canonically conjugate dynamical variables obeying an 
uncertainty relation, while in the second (stretched) 
scheme they emerge as independent coordinates 
enjoying simultaneous measurability privileges. The 
problem is that this does not take account of the 
constraints. The Dirac quantization scheme is an 
attempt to do this and we can use the present example 
to test its consistency. In the Dirac scheme the funda­
mental approach is through the Dirac brackets, 
together with the elimination of the second class 
constraints. 

To this end we recall that all of the 2N constraints 
of the stretched formalism are second class. From 
Eqs. (7) and (16), we find the matrix Css' has the block 
diagonal form 

Iless·11 = 

° -I 
° 

o 

° -1 

° 
° 

o 

, (21) 

-1 

° 
where pairs of rows and columns are labeled by values 
of n and members of each pair by 1 and 2 correspond­
ing to the enumeration of the constraints. Combining 
Eqs. (6), (12), and (21), we find, suspending the 
summation convention, 

[~, 'fJ1D = [~, 'fJ]~ + [~, sm]~[r m - Pm' 'fJh 

- [~, rm - Pmh[sm' 'fJh, (22) 

so that for the fundamental Dirac brackets we have 

[qm' Snb = 0, 

[qm' qn]~ = 0, 

[Pm' Sn]~ = 0, 

[qm' Pn]~ = bmn , 

[rm,Pnb=O, 

[Pm' p"h) = 0, 

[qm' rn]~ = bmn , 

[rm' r n];O = 0, 

[Sm' Sn]1j = 0, 

[r m' Sn]~ = 0, 
(23) 

while the remaining brackets can be found byapplica­
tion of the relation [~, 'fJ]~ = - ['fJ, nD' 

The elimination procedure of Dirac can now be 
implemented. The N conjugate pairs (p, s), whose 
rather uninspiring time development is given by 
P = rand S = 0, are eliminated in favor of the q's 

and r's, and the fundamental Dirac bracket relations, 

[qm, r n]~ = bmn , [qm' qn]~ = [rm' r n]~ = 0, (24) 

assume the role of the fundamental Poisson brackets of 
the usual theory. For the new Hamiltonian we have 

Je'U,(qprs) ---+ ie(q, r), where, by Eq. (20), 

Jecu,(q,p, r, s) = ie(q, r) = H(q, r). (25) 

Equations (24) and (25) show that the distinction 
between quantization of this system through the Dirac 
prescription based on the stretched formulation and 
the usual prescription (also Dirac's) based on the 
"unstretched" formulation is no more than alpha­
betical: the use of r in place of P for the same object. 

B. Constraints Present in the Unstretched Theory 

We assume now that the Hamilton formulation for 
the equations describing the system must be carried 
out in the face of constraints of the type given by 
Eq. (4): 

(26) 

The Dirac theory shows that the total Hamiltonian, 

(27) 

where H is given by Eq. (1), satisfies the usual 
Hamilton equations weakly. Actually Eq. (27) may 
not represent a single Hamiltonian, but a class of 
Hamiltonians differing from one another by arbitrary 
linear combinations of first-class constraints. This 
non uniqueness springs from the fact that the state of 
the system at a given time does not necessarily deter­
mine a unique set of coordinates. 

It can be shown that the entire physical theory based 
on H T , the equations of motion, the nonuniqueness, 
everything, can be recovered from the action principle 

(28) 

with Eq. (26) as subsidiary conditions on the variations. 
We are precisely where we were before now except for 
the presence of the constraints. We can pass as before 
to the stretched Hamiltonian (10) and have only to 
include Eq. (26) together with Eq. (12) to recover Eqs. 
(13) with Je'b replaced by 

Jei, = Je + Ak$k + U1miplm + u2mip2m' (29) 

where Ak are Lagrange multipliers to Eq. (26). We 
note that Eq. (18) still holds. 

Turning to the consistency conditions, those for 
iplm and ip2m determine the u's uniquely when the A's 
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are specified. The results are correctly given by Eqs. 
(15) if Je is replaced by 

Jet == Je + Ak$k' 

Hence, substituting into Eq. (29), we find 

(30) 

oJet oJe t 

Jet, = Jet - - Sn + - (rn - Pn). (31) 
oqn 0Pn 

To handle the un stretched constraints $k = 0, we 
introduce 

ffiS ffi O$k O$k 
'Vk = 'Vk - -Sn + -ern - Pn), 

oqn oPn 
(32) 

define 
oJe oJe 

Je1J == Je - - S + - (r - p ) (33) 
oqn n 0Pn n n , 

and insert into Eq. (31) to get 

(34) 

The consistency conditions on $k = 0 are given with 
the help of Eq. (34) by 

. t S 
$k ~ [$k' Je1JJ:r ~ [$k' Je1Jlr + Ak,[$k, $k'] ~ O. 

(35) 
The first term, using Eq. (18), is 

[$k' Je1Jlr = [$k' H - oH Sn + oH (r n - Pn)] 
oqn 0Pn (j' 

oH oH = - - [$k' sn] + - [$k' rnh' 
oqn 0Pn 

= _ oH O$k + oH O$k = [$k' H]p . 
oqn 0Pn 0Pn oqn 

(36a) 
Similarly, 

[$k' $~J:r = [$k' $~]p, (36b) 

so combining Eqs. (35) and (36) we find the conditions 
<ilk ~ 0 become 

(37) 

so the remaining, secondary constraints are found in 
the same way as in the un stretched theory and the Ak 
in the same way as the Wk of Eq. (27) to precisely the 
extent that the Wk are determined. Hence we may, 
without loss of generality, take 

H + Ak$k = HT , (38) 

and by Eqs. (18) and (30), 

Jet = H T , (39) 
and finally,6 

t oHT oHT Je1J = HT - - Sn + - (rn - Pn)· (40) 
oqn oPn 

A partial elimination of the second-class constraints 
can be effected, singling out TIm = 0 and T2m = 0 for 
attack and leaving any others there may be untouched. 
To do this we need a "truncated" Dirac bracket 
where, in Eq. (6), s only runs over the indices on the 
T's. The matrix (21) is unchanged and the relations 
(22), (23), and (24) are all the same if [ ];n is replaced 
by [ b" prime for truncated. The truncated Dirac 
bracket of the stretched formalism assumes the role of 
the Poisson bracket of the unstretched formalism and 
we have6b 

Jet, = HT and Jef; = HE' (41) 

III. SUMMARY AND CONCLUSION 

The fact that Hamilton's equations are the Euler­
Lagrange equations of an action principle with respect 
to a "stretched" configuration space, which is in fact 
just the phase space of the Hamilton theory, enables 
us to regard the canonical equations in the context 
of a stretched Lagrangian theory. From this new 
theory is constructed a canonical formalism, the 
stretched formalism. Owing to the special form of the 
"kinetic energy," i.e., PniJn' and the independence of 
the stretched Lagrangian of the p's, exactly 2N second­
class constraints arise. Elimination of these con­
straints in the Dirac fashion, through the introduction 
of the Dirac bracket, recovers the original canonical 
formalism completely and no ambiguities can survive 
quantization if the Dirac bracket correspondence 
to the fundamental commutators is employed. 

6 (a) JeTI is only unique modulo the first-class primary constraints. 

Based on H p = H' + v.<II a, Eq. (40) gives JeTI = Je' + v.<II!, ~here 
Je' is determined by the consistency conditions, the v. are arbitrary 
and the <II: are given as in Eq. (32). The "stretched constraints" <II! 
can be shown to be first class if and only if <II. is first class in the 
unstretched theory; in fact all the <II's satisfy the strong equations, 
[<117, <117,j(j' = [<111' <II1,]p' (b) Passage to the formalism of the 
extended Hamiltonian (Jet> can now be accomplished by replacing 
Hp in Eq. (40) by HE = HT + v.,<II." the <II., being all those first­
class secondary constraints generated by forming unstretched 
Poisson brackets of the <II. with one another! 
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It is shown that a multiparticle state constructed from solutions of the Klein-Gordon equation can be 
also described by a family of complex measures having simple properties. These measures are the 
expectation values for that state of products of projectors corresponding to the spectral decompositions 
of certain self-adjoint operators. The results obtained are used in discussing the problem of defining 
quantized free fields at a point. 

1. INTRODUCTION 

On previous occasionsl - 3 we have shown how one 
can describe the physical states in nonrelativistic 
quantum mechanics by families of measures, obeying 
some simple rules. Such a description starts with the 
premise that we have at hand an unambiguous 
physical situation, in which observables are repre­
sented in the Hilbert-space formalism by self-adjoint 
operators. A measure is then attached to each com­
bination consisting of a state and an n-tuple of 
observables. 

In relativistic quantum mechanics, when dealing 
with the Klein-Gordon equation or Dirac equation, 
well-known difficulties appear4 when one attempts to 
introduce observables as fundamental as the position 
observables. It is, therefore, interesting to reconsider 
the description of pure states in terms of families of 
measures. However, as we are not dealing any more 
with a physically clear-cut situation, we adjust the 
nature and properties of these measures to achieve 
the simplest possible formal properties. As the 
description of states with arbitrarily great numbers of 
identical particles is of particular interest, we consider 
the Hilbert space which is the direct sum of one, two, 
etc., particle states. We also allow for the presence 
of antiparticles in order to be able to apply the 
obtained results (Appendix) to the problem of 
defining free fields at a point. 

Our considerations are carried out for the case of 
spin-zero particles obeying the Klein-Gordon equa­
tion. The treatment of the case of spin-! particles 
obeying the Dirac equation could proceed along the 
same lines, but with a certain increased intricacy in 
the notation. 

• Present address: Department of Mathematics, University of 
Toronto, Toronto 5, Canada. 

1 E. Prugovecki, J. Math. Phys. 7, 1054 (1966). 
• E. Prugovecki, J. Math. Phys. 7,1070 (1966). 
3 E. Prugovecki, J. Math. Phys. 7, 1680 (1966). 
4 T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949). 

2. THE IDLBERT SPACE OF PURE STATES 

Consider particles of spin zero described by wave­
functions J(x) obeying the Klein-Gordon equation 

(0 - m 2)f(x) = 0, 

expressed in the metric 

a2 

0=--, 
ox.ox' 

(2.1) 

x 2 = g}l.x}lx' = (XO)2 - x2. (2.2) 

The Hilbert space JeU) of all pure one-particle states 
can be obtained in the following way: 

Denote with K(l) the function space of all positive 
energy solutions of (2.1), i.e., of all functions J(x) 
which can be written in the form5 

f(x) = .J2 fd4ke-ik"X(j(k2 - m 2)e(ko)J(k) 
(27T)! 

= (27T)-!f d
3

k 
[2(k2 + m2)]! 

X exp {i[kx - xO(k2 + m2)in]E(k), (2.3) 

where JE(k) is a function for which 

f d3k 
----;-l IfE(kW < + 00, 
(k2 + m2)~ 
fE(k) = ][k, (k2 + m2)iJ. (2.4) 

We introduce in K(l) the inner product 

(f I g) = i r f*(x) 8
0 

g(x) d3x 
Jt=to ax 

f d3k * = .. ~] E(k)gE(k). 
(k2 + m2

) 

(2.5) 

The Hilbert space Je(1) is the completion of K(1) with 
respect to the norm 

IIJII = [(JIJ)]~· (2.6) 

5 S. S. Schweber, An Introduction to Relativistic Quantum Field 
Theory (Row, Peterson and Co., Elmsford, N.Y., 1961), Sees. 3 
and 6. 
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According to the established practice, if we have 
antiparticles which are distinct from the considered 
particles, we assume that the Hilbert state ,Jew of all 
states of systems consisting of antiparticles is con­
structed from the space Km of the negative-energy 
solutions of (2.1) in the same fashion as JeU) was 
constructed from K(l). The general element of £(1) 

will be 

f(x) = ..fl.! fd4keik'iJ)!5(k2 - m~O(-ko)J(k), (2.7) 
(27T) 

where J[k, - (k2 + m2)!J satisfies (2.4). 
In order to construct the Hilbert space of vectors 

representing pure states with arbitrary numbers of 
particles and antiparticles, consider the Hilbert spaces 

X<m.n) = (JeI1')®m ® (x(1)®n, m, n = 1,2, ... , 

(2.8) 

which are the closures of the linear manifolds spanned 
by all the vectors of the form 

from the relation 

(0 - m2)[xVf(x») = 2o"j(x). (3.2) 

Instead we have the operators Q:i introduced by 
Newton and Wigner7 

(QiJ)(x) = xif(x) 

+ J.. f exp (-m Ix - yl) of(y) dSy 
87T Ix - yl oyi ' 

(3.3) 

which do lead, however, to noncovariant localized 
states. 

From (2.3) it is, however, clear that for fixed 
XO = t a state 'Y E K(l) is given completely if lEek) is 
known, or equivalently if the function 

fJ/k;f) = (k2 + m2)-! exp [-it(k + m2}tJJ~), 
f E Je(lI, (3.4) 

is given. This suggests the one-to-one linear mapping 

JE(k)- (M:1,01E)(k) = fJtCk;f) (3.5) 

11 ® ... ® 1m ® gl ® ... ® gn' of KIl) into a Hilbert space HUl of square-integrable 

It, ... ,1m E Je(1), gl"", gn E Xm. (2.9) functions fJ(k), with an inner product 

In X(m.n) we can introduce the symmetrizer ('Y1 I 'Yz) = f d3k'¥t(k)q:·2(k). (3.6) 

Slm,n) = _1_! ! [a] ® [T), (2.10) 
m! n! a€Gm rEGm 

where Gk denotes the group of all permutations of k 

objects, while [aJ ® [7'J, when applied on (2.9), 
performs the permutation a on the first m indices, 
and the permutation 7' on the last n indices. If we 
write 

(2.11) 
then 

Je = ffi Je(m,n) (2.12) 
m,n=O 

is the Hilbert space of all pure physical states that 
we were searching. Note that for m = n = 0 we have 
introduced an extra space Je(o.O), which will be 
required to be one-dimensional, and consequently 
generated by a single normalized vector n, which will 
be called the vacuum state. 

3. STATES DESCRIBED BY FAMILIES OF 
MEASURES 

As is well known, 6 the j-coordinate position oper­
ator in Jell) cannot be defined by the mapping 

l(x)-x1(x) (3.1) 

because such a mapping leads us outside Je(l), as is seen 

This mapping is bounded because 

(Mdl Md) = f d3k IfJt<k;f)12 

=f(k2 :~2)! 11E(k)1
2 

= (flf), (3.7) 

and consequently its domain of definition can be 
extended in a unique fashion to the entire Jem, 
Furthermore, it obviously maps JeU) onto H(l). 

A similar mapping of JeU) onto H(ll 

tE(k) - (M:O.1)gE)(k) = fJt(k; g), g E JeCI) (3.8) 

can be introduced, where 

Y't(k;g) = (k + m2)-lexp [it(k + m2)!]gE(-k), 

(3.9) 
for which the same remarks apply. 

. We can also map .:fe(m.n) onto 

H(m+n) = (HUl)®m+n (3.10) 
by means of 

M!m,n) = (M!1.0»®m ® (M!O,l»®n. (3.11) 

Furthermore, if we define in H(m.n) a symmetrizer 
analogous to (2.10). such that 

1 
r(m,n) = -1 -1 ! ! [aJ ® [1'J, 

m. n. ~Gm reG" 
(3.12) 

1 P. R. Halmos, Measure Theory (D. Van Nostrand, Inc., Prince­
sA. S. Wightman, Rev. Mod. Phys. 34, 845 (1962), AppendiX I. ton, N.J., 1950). 
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where [0'] acts on film) and [7"] on fi(n), we can 
define 

H(m,n) = {T(m,n),¥, '¥ E fi(m,n)} (3.13) 

and obviously have Je(m,n) mapped onto H(m,n) by 
M(m,n). Hence, if we take H(O,O) = Je(O,O), the operator 

00 

M
t 
= 1 EB M(1,O) EB M(O,I) EB EB M(m,n) (3.14) 

m,n=l 

provides a linear mapping of Je onto H, 

H = EB H(m,n), 
m,n=O 

which evidently has an inverse. 

(3.15) 

On H(I) we can define the "energy-momentum" 
operators 

(Pitp)- (k) = kitjj(k), j = 1,2,3, 

(potp)- (k) = (k2 + m2)itjj(k), (3.16) 

which are obviously essentially self-adjoint, and hence 
their completions, when denoted by the same symbol, 
have the spectral decompositions 

pv = L~OOA dF.(I;), I;. = {u: -00 < U :::;; A}. 
(3.17) 

For the Borel set B, the projectors F.(B), v = 1,2, 3 
have the particularly simple representation 

(3.18) 

We define the "position" operators Xi by first 
introducing the integral transforms 

(x) = (217~tf exp ikx -(k) d3k (3.19) 
tp -J2 (k2 + m 2)1 tp 

and then defining 

(Xitp)(x) = xitp(x), j = 1,2,3. (3.20) 

As the transform (3.19) has the inverse 

tjj(k) = -J2 (217)-i f exp (- ikx)(k2 + m2)ltp(x) d3x, 

(3.21) 

(3.20) defines indeed a unique linear operator with 
everywhere dense domain in H(l), which can be seen 
to be essentially self-adjoint. Consequently, we have 
the spectral decompositions 

Xi = L:OO A dE;(I ;.). (3.22) 

The reason for this particular choice of definition for 

the "position" operator becomes clear at the end of 
this section. 

By standard methods we can build from the 
projection E;(S),j = 1,2,3, and F.(S), v = 0, ... , 3, 
the projection valued measures6 EU)(B) and FU)(B) on 
IR 3 and IR 4 respectively, which are such that for 
B = Bl X B2 X Bs and B = Bo X . . . X Bs , respec­
tively, (where Bo, .•• ,Bs are Borel sets on IRI) they 
reduce to the products 

E(I)(BI X B2 X Bs) = El(Bl)E2(B2)Es(Bs), 

F(l)(Bo X BI X B2 X Bs) = Fo(Bo)Fl(BI)F2(B2)Fs(Bs). 

(3.23) 

Denote in general by $n the family of Borel sets on 
IR n. To Borel sets 

R = Rl X ... X Rn E ($3)<8>n, 

S = SI X ... X Sn E ($4)<8>\ (3.24) 

we can assign, respectively, the following projectors 
on fi(n): 

t(n)(R) = E(1)(R
l

) ••• E(n)(Rn), 

p(n)(s) = F(1)(SI) ... F(n)(Sn)' (3.25) 

The above projectors do not leave, however, the 
space H(n,o) invariant. Consequently, we introduce 
the operators 

E~m,n)(R' x R") 

1 = -- ! t(m+n)(R' X ••• X R~ 
m! n! (itt' .. ,i",)eG", it 1m 

Ii 10' •• .in)eOn 

X R;m X Ri'l X . . . X R;~), 

F~m.n)(s' X S") 

= _1_ ! p(m+n)(s~ X ... X S~ 
m! n! (i 1 ,' " ,im)eGm 'I 'm 

(ilo' •• ,;n)eOn 

X S;1 X ... X S;n)' (3.26) 

where the summation is taken over all permutations. 
These operators are not, in general, projectors, but 
they leave H(m,n) invariant. 

Let p(m.n) denote the projector which projects a 
vector '¥ E H into its component ,¥(m,n) in H(m,n). 
Define 

E(m,n)(R) = E~m,n)(R)p(m,n), E(O,O)(R) = p(O,O), 

F(m,n)(s) = F~m,n)(s)p(m,n), F(O,O)(S) = p(O,O), 

(3.27) 

and consider, for fixed '¥, II'¥II = 1, the family 

w!m,n,k)(Rl , SI"", Rk , Sk; t) 

= ('¥I E(m,n)(R
l
)F(m,n)(Sl) ... E(m,n)(RJF(m,n)(Sk) I'¥) 

(k = 0, 1,2, ... , m, n = 0, 1,2, ... ) (3.28) 
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of set functions. As is shown later in Theorem 2, Sec. 
5, the family (3.28) provides a unique description of 
the Hilbert ray generated by'f". Consequently, due to 
the existence of the mapping (3.14) which has an 
inverse, it also provides a unique description of the 
ray generated by the corresponding vector 

<I> = Mtl'f" E Je, (3.29) 

i.e., of the pure physical state described by <1>. 
The set functions (3.28) have ($3)®k(m+n) as a 

domain of definition. From (3.23) and (3.26) we can 
immediately see that they are a-additive7 with respect 
to each of its arguments from $3. Since .p,3k(m+n) is 
the Boolean a-algebra generated by ($3)®k(m+n) , 
we can compute easily that each of the set functions. 
(3.28) can be extended in a unique manner to a 
complex measure over $3k(m+n). 

For given m and n, the measures W~k) are not 
independent of one another. As we can see immediately 
from (3.26) that 

E~m.n)(1R3(m+n» = F~m.n>C1R4(m+n» = 1, (3.30) 

we have 

w~m.n.k)(Rl' Sl' ... , R,c, Sk; t) 

= w~m.n·k+l)(Rl' SI' ... , R
k

, Sk' IR 3(m+n), IR 4(m+n); t). 

(3.31) 
Consider now 

where 'f"1' 'f"2 E H(m.n) are obtained by applying on 
'f" in (3.28), respectively, the adjoint of the operator 
preceding E(m.n)(R) and the operator succeeding 
E(m.n)(R). 

In order to keep the notation simple, we take that 
'f"~",.n) = 0, K = 1, 2, for n '" 0, i.e., that there are 
no antiparticles present in the considered states. 
However, the same considerations apply to the 
general case. 

We can express 'f"(m.O) as functions in the k-space 

(3.33) 

or in the x-space 

'f"~m.o)(xm) = 2-m/2(27T)-3m/2f exp (ik"'xm) 

x IT (k2 + m2)-1'iJ'(m.O)(kS) dks, 
v~l 

x'" = (Xl"'" X.), k"'xm = klx1 + ... + kmxm.· 

(3.34) 

By taking into account the symmetry properties of 
(3.33) and (3.34) under permutations of their argu-

ments, we get from (3.26) and (3.27) that 

('f" 11 E(m.o)(R) I'f" 2) 

= ('f"im.o)1 t(m.o)(R) I'f"~m.o» 

= 2-m(27T)-3'" f dkm fR dxm fR dym exp [ikm(xm - ym)] 

x ft (k; + m2)ll¥im.o)(x"')'F~m.o)(ym). (3.35) 
v~l 

From (3.4) and (3.19) we can easily derive that for 
given t 

'f"(m.n)(x"', yn) = <I>(m.n)(xm, yn), 

<I> = Mt1'f", (3.36) 

where xm, when entering as argument in <I>(8.0)(X"'), 
stands for Xl, t, ... ,xm, t 

<I>(m.o)(xm) = <I>(m.o)(X1 , t, ... , xm, t); (3.37) 

and similarly for yn. 
From (3.35), (3.36), and (3.4) we get 

('f"11 E(m.o)(R) 1'f"2) 

= im r dxm<l>im.o)(xm) a ... a <I>~m.o)(xm). (3.38) 
JR ax~ ax~ 

Similarly, for 

W~"'·O.k)( . .. , S, ... ; t) = ('f"11 F(m.o)(s) 1'f"2), (3.39) 

we get 

('f"11 F(m.o)(s) 1'f"2) 

= r dkm(ft k~)-1 cI>iE.O)(km)cI>~E.o)(km), Js v~l 
k~ = (k; + m2)!, (3.40) 

where 

<I>(m.o)(xm) = (27T)-3m/2 

X f dk"'(fi k; + m2r! exp [ikmx"'] 

X exp [ -itv~l(k~ + m2
}l]cI>E(km). 

(3.41) 

4. MEASURE THEORETICAL DESCRIPTION 
OF STATES IN H 

We prove in this section the following theorem: 

Theorem 1,' A Hilbert space hi') with inner product 
('f" 1 I 'f" 2)1 can be constructed from all the families of 
set functions 

V!:)(R1 x ... x Sk) = ('f"1 t(')(R1) ... P(')(Sk) I'f") 

x R1, ... ,Rk E ($3)®', S1"", Sk E ($4)®', 

k = 1,2, .. " (4.1) 
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corresponding to all 'I" E Hcr), and projectors Ecr)(R) 
and Pt)(S) can be assigned to each R E ($3)®m+n and 
S E ($4)®m+n in such a manner that for each 'I" E HCr) 

V!P(R1 X .•• x Sn) = ('Y'I E~r)(Rl) ... Fir\Sk) 1'1"') 

(4.2) 

operators, which constitute the set 1.'>0 of fundamental 
observables introduced in Ref. 1, Sec. 2. To each 
'I" E H, 11'1"11 = 1, we can assign a family P'I' of com­
plex probability measures1 

p~l" .. a·(B),. BE$·, or.l,"·,or..El.'>o, y=I,2,"', 

(4.7) for some '1'" E Ht). An isometric mapping cu, of Hcr) 
onto Hir) exists for which generated by the set function 

E~r)(R) = cu,ECr)(R)cu, -t, Fir)(S) = cu,pcr)(s)cu, -1. 

(4.3) 

We will establish the above theorem by demon­
strating two lemmas. Since we consider in the next 
two lemmas a Hilbert space Hcr) for fixed r, we simplify 
the notation by replacing Hcr) = (Hu»®r by H,Ecr)(R) 
by E(R) and pcr)(s) by PeS). 

Lpmma 1: For each'Y E H, consider the family V'I' 
of all set functions 

V!ff)(RI x SI X ..• X Rk x Sk) 

= ('YI E(R1)F(Sl) ... E(Rk)F(Sk) 1'1") 

where 
R1 , ••• , Sk E ($3)®r, k = 1,2, .. '. (4.4) 

E(R) = El(RCl» @ ••• @ Er(Rcr», 

PeR) = Pl(RU» @ ••• @ pr(Rcr», (4.5) 

R = RCl) X ••• X R(r) E ($3)®r, 

with Ei(R(i» and Pi(RCi» acting on the ith Hilbert 
space in the direct product H = (H(1)®r, and is 
explicitly defined by (3.23) with RCi) = Bl X B2 X B3 
and Bo = [Rl. From the family 

(4.6) 

a Hilbert space HI with inner product ('1"1 I 'Y 2)1 can 
be constructed, and projectors E1(R) and P1(R) 
acting on HI can be attached to each R E ($3)®r in 
such a manner that for each'Y we have 

V!ff)(RI X ••• x Sk) = ('Y'I E(R1) •.• P1(Sk) 1'Y')1, 

R1 , ••• , Sk E ($3)®r, k = 1,2. . . . • (4.5) 

for some vector 'Y' E HI' 

Proof' Consider the following 6r self-adjoint opera­
tors acting on H and defined by 

X~i) = 1 @ ••• @ Xi @ ••• @ 1 , 

p~i) = 1 @ ... @ pi @ .•• @ 1, 

i = 1 •...• r, j = 1,2.3, (4.6) 

where the ith factors in the above direct products are 
the operators (3.22) and (3.17), respectively, acting 
on the ith HU) factor in the tensor product Hilbert 
space H = (H(1»®r. We shall consider these 6r 

p~;' .. ;a·(B
l 

X ... X B.) 

= ('YI Ea,(B1) ••• Ea.(B.) 1'1"). 

B1 • ••• , B. E $1, (4.8) 

In the above expression, if or. is the observable repre­
sented by the operator IX, which can be anyone of the 
6r operators (4.6), then Ea(B), BE $\ is the spectral 
measure belonging to that operator 

(4.9) 

The families (4.7) of all complex probability measures 
belonging to all normalized vectors from H obey 
(cf. Ref. 1, Sec. 2.2) all the ten axioms of Refs. 1 and 
2. Consequently a Hilbert space H with an inner 
product ('Y 1 I 'Y 2)1 can be built as outlined in Ref. 2 
(cf. Sec. 3.3, Theorem 3), and to each IX E 1.'>0 and 
BE $1 a projector E~(B) on HI can be assigned in 
such a manner that for each normalized'Y E H 
p~ .. ' .a·(Bl X ... x B.) = ('Y'I E~l(Bl) ... E~,<B.) \'Y') 

1X1.···.IX.EI.'>0. Y=I,2.···. (4.10) 

for some 'Y' E HI' 
On the other hand, we have 

V!ff)(Rl x Sl X ... X Rk x Sk) 

= p~';~2;'" ;~2k-';~2k(Rl X Sl X ... X Rk x Sk) (4.11) 

with 
oc - (x(I) XCI) XCI) ... X Cr) X Cr ) x(r» 

2/l-1 - 1, 2, 3. • 1, 2, 3 

oc - (pCl) pU) p(1) ... per) per) per»~ 
2/l- 1,2'3' ,1,2,3, 

I" = 1, ... k. (4.12) 

Owing to simple properties of complex probability 
measures (cf. Ref. 1. Axiom I), we can recover any 
of the set functions (4.8) from the set function (4.11), 
and in turn, according to well-known measure­
theoretical theorems,7 any of the measures in (4.7) can 
be recovered from the corresponding set function 
(4.8). This fact, in conjunction with the remarks 
leading to (4.10), establishes the validity of the lemma. 

Lemma 2: There is a unitary mapping U of H onto 
HI which is such that for all IX E 1.'>0 == {X?), ... , x~r), 
•.. , p~r)}, 
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Proof: Consider the following operators acting on 
H(l) [cf. the notation in (3.17) and (3.27)]: 

ni = pi[(p1)2 + (p2)2 + (p3)2 + m2]! 
+00 

= III ki(k2 + m 2)! dF(1)(1R 1 
X I k ), j = 1,2,3, 

-00 (4.13) 

It = {A: - 00 < Ai ::::;; ki , j = 1,2, 3}, (4.14) 

which are obviously (essentially) self-adjoint. When 
II i acts on a vector'Y E H(1) which can be represented 
by a wavefunction (3.19), we get 

(ni'Y)(x) = - i(otp/oxi ). (4.15) 

Consequently we can derive 

(4.16) 

for vectors'Y from the common domain of definition 
of Xi and pi'. 

The corresponding operators 

mil = p~i)[(p~il)2 + (P~i»2 + (p~i»2 + m2]! (4.17) 

acting on fI satisfy the commutation relations 

[X}i), m~')]'Y = ibii,bw'Y, i, i' = 1, ... ,r, (4.18) 

for 'Y from the common domain of definition of 
Xi and pi'. The 6r operators XP) and n}i) provide a 
representation of the commutation relations, which 
has to be irreducible; in fact, if it were reducible, since 
we have that 

p~i) = n~i)[g(mi)2 + n~i)2 + n~il2) + m2]-!, (4.19) 

where g('Y]) is the positive root of the cubic equation 

(4.20) 

then we could conclude that Xji) and Pji) leave a 
nontrivial linear submanifold of fI invariant, which 
is obviously false. 

In fl1 we can introduce the operators 

For any normalized'Y E fI, write 

'Yl = Ea,.(B~) ... Ea,(Bi)'Y, 

'Y2 = Ep,(B~) ... EPv(B~)'Y, 

1X1,···,1X,., fh,"',{1vEOo' (4.22) 

If the above vectors are from the common domain of 
definition of XP) and n~i), then we obtain immediately 
from (4.10), after carrying out appropriate integra-

tions, that the vectors 

'Y' = E' (B') ... E' (B')o/' 1 a,.,. al 1 , 

'Y' = E' ("B")" . E (B")'Y' 2 p, 1 Pv v (4.23) 

are from the common domain of X;w and n;w, and 
that 

('Y{I [X~w, n;(k)] 1'Y~)1 = ('Y11 [X~il, n:k)] 1'Y2) 

= ibikbj!('Y1 I 'Y2) 

= ibikbj!('Yi I 'Y~)1' (4.24) 

From the way fl1 is constructed (cf. Ref. 2, Sec. 3.3, 
Theorem 3) we can infer that (4.24) can be true only 
if 

[X~(;), n;(k)]'Y' = ibikbn'Y' (4.25) 

for vectors 'Y' from the common domain of definition 
of X;w and P;(k). Furthermore, we must have that 
(4.24) represents an irreducible representation of the 
commutation relations; otherwise, from the relations 

('Y{I X~w I'Y~) = ('Y11 X~ill'Y2)' 
('Yil n~(;) I'Y~) = ('Y11 mil 1'Y2), (4.26) 

which are readily derivable from (4.10), we could 
infer that (4.18) is a reducible representation of the 
commutation relations, which we have seen not to 
be true. 

According to the well-known von Neumann's 
theorem,s there is a unitary operator U mapping fI 
onto fl1 for which 

X~w = UX}i)U-t, n~(;) = UII}i)U-1• (4.27) 

We also have, for any B E $\ 

E;(B) = UEaCB)U-l, IX E {XP), X~l),···, x~r)}, 

(4.28) 
and 

(4.29) 

where A~il(B) and A;W(B) are the spectral measures 
corresponding to the spectral decompositions of n}i) 
and n;w, respectively: 

mil = L+ooaoAdA~i>UA)' ni(;) = L+ooOOAdA~(;)(IA)' 
(4.30) 

In order to establish that (4.28) is also true for 
IX E {P~1), ... p~r)}, introduce the projectors A(i)(B) 
and A'(i)(B), BE $:i, which for B = B1 X B2 X Ba E 
($1)®3 become 

AW(B1 X B2 X B3) = A~i)(B1)A~i)(B2)A~i)(B3)' 

A,w(B1 X B2 X Ba) = A~w(B1)A~(i)(BJA~w(B3)' 
(4.31) 

8 J. von Neumann, Math. Ann. 1M, 570 (1931). 
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It is easy to derive from (4.28) that 

A,w(B) = UA(i)(B)U-I, BE $3. (4.32) 

On the other hand, we get that for IX = Pj;), due to 
(4.19), 

EiB) = AW[fil(B)], E~(B) = A,w[fi\B)], (4.33) 

with 

flk) = ki[g(lkI2) + m2]-t, j = 1,2, 3. (4.34) 

From (4.32) and (4.33) it follows immediately that 
(4.28) is true for any IX = P}il, and consequently the 
lemma is proved. 

S. MEASURE-THEORETICAL DESCRIPTION 
OF STATES IN H 

We prove the following theorem, which has been 
mentioned at the end of Sec. 3. 

Theorem 2: Consider any vector 'Y belonging to 
H(m.n), and the family of set functions 

W!t')(Rl x 8 1 X .•• X Rk x 8k ) 

= ('YI E(m,n)(R
l
)F(m,n)(8

l
) ••• E(m,n)(R

k
)F(m.n)(8

k
) I'Y), 

R1 , ... ,Rk E ($3y2Jm+n, 81,"', 8
k 

E ($4)®m+n. 

(5.1) 

If the family (5.1) is given for each 'Y E H(m.n), then a 
Hilbert space HI with inner product ('Y' I 'Y")l can be 
constructed from this set of families of set functions, 
and to each R E ($3)®m+n and S E ($4)®m+n bounded 
operators El(R) and Fl(R) acting on HI can be 
assigned in such a manner that for given'Y E H(m.n) 

there is a 'Y' E HI' for which 

W!t')(Rl x ... x 8k ) = ('Y'I E1(Rl) ... F l (8k ) 1'Y')1, 

R1 , •.• ,Rk E ($3)®m+n, 81,"', 8 k 
E ($4)®m+n, 

k = 1,2' . '. (5.2) 

Furthermore, if a vector 'Yl E H(m.n) satisfies the 
equality 

('Yll E(m,n)(R
1

) ••• F(m,n)(8
k

) 1'Y
1

) 

= W!t')(Rl x ... x 8 k ) (5.3) 

for all Rl , ... Rk E ($3)®m+n, 8 1 , ••• , 8
k 

E ($4)®m+n 

and all k = 1, 2, ... , it follows that 

'Yl = a'Y, lal = 1, 

for some complex number a. 

(5.4) 

In order to establish Theorem 2, we have to prove 
a result similar to Theorem 1, but for the set functions 
(5.1) rather than for (4.1). Now, the Wfunctions (5.1) 
can be explicitly expressed, owing to (3.26), in terms 

of the Vfunctions (4.1), but the converse is not true in 
general. However, another kind of relation can be 
established. In order to avoid complicating the nota­
tion, consider the case of the Hilbert space H = H(m.O) 

and fI = fI(m.o). 

The domain of definition of the projector-valued 
set functions E(R), R E ($3)®m, and F(8), S E ($4)®m, 

can be extended6 to arbitrary elements of $am and 
$4m, respectively, in such a manner that the resulting 
projector-valued set functions will be projector­
valued measures. Accordingly, the domain of defini­
tion of V¥!)(B1 X B2 X •.• X B2k) can be extended in 
a unique manner to arbitrary Bl , B3 ,'" , B2k- 1 E 
$3m, B

2
, B4 , ... ,B2k E $4m. 

Denote by Rand S the sets 

R = U Rkl X ... X R kn E $3n, 
(k},"', kn)EOn 

S = U Ski X ... X Sk
n 

E $4n, (5.5) 
(kl,···, kn)EGn 

in case the Rand 8 are the sets appearing in (3.24). 
By fAan and $4n we denote the Boolean a-algebras 
generated by all the sets Rand S, respectively. 

In the case that Rand 8 are of the form 

R = Rl X '" X Rm E($3)®m, 

Ri 11 R; = 0, i:;t= j, 
8 = Sl X ... X Sm E ($4)®m, 

Si 11 Si = 0, i:;t= j, (5.6) 

we see immediately from (3.26) that 

E~m,o)(R) = l.. t(m)(R), 
m! 

Frim,O)(8) = -I. p(m)(S). (5.7) 
m! 

Consequently we have, whenever Rl , ... , 8k satisfy the 
condition (5.6), that 

V!t')(Rl x Sl X ... X Rk x Sk) 

= (m!)2kW~)(Rl x 8 1 x ... X Rk x 8
k
). (5.8) 

On the other hand, we have the following lemma: 

Lemma 3: From the set S of all families V"" 
'Y E H(m.o), of set functions, where V", for a given 
'Y E H(m,o) denotes the family of all set functions 

V!t')(Rl x ... x Sk), Rl ,"', Rk E $3m, 

SI' ... , Sk E $4m k = 1, 2, .. " (5.9) 

a Hilbert space H~m,o) with inner product ('Y' I 'Y"» 
can be constructed, and projectors El(B'), and Fl(B\ 
on H~m.o) can be attached to each B' E $3m and 'each 
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B" E $4m in such a manner, that for each'Y E H(m.O) 
we have 

V~)(RI x ... x S,,) = ('Y'I ElRl) ... Fl(Sk) I'Y') 

(5.10) 

for some vector 'Y' E H~m.o). Furthermore, if another 
'Y" E H(m.O) satisfies (5.10), then 'Y" = a'Y' for some 
complex number a, lal = 1. 

Proof' We define a projector measure E(B) on 

i 3m by requiring that E(B) = E(B) for BE $3m. In 
a similar manner, we can define F(B) on $4m. These 
projection-valued measures can be looked upon as the 
spectral decompositions of 3m- and 4m-dimensionaP 
observables, respectively. The results of Refs. 1 and 
2 have been generalized to such cases in Ref. 3. The 
existence of a Hilbert space HI which can be built 
from the complex probability measures 

p~l;'" ;A'(B1 X ... x Be) = ('YI Al(Bl) ... A.(Bs) I'Y), 

(5.11) 

where Ai can stand for either E or F, has been proven 
in Ref. 3, Sec. 5. The same construction yields the 
existence of the projectors El(B') and Fl(B") for each 
B' E $3m and B" E $4m, which are such that 

pAl;'" ;A'(B1 X ... X Bs) = ('Y'I A{(BI ) ••• A~(Bs) I'Y') 

(5.12) 

for some'Y E HI' where A~ stands for E1 or Fl when 
Ak stands for E or F, respectively. On the other hand, 
one can show that all the measures (5.11) are uniquely 
determined by the family of set functions (5.9); the 
proof of this statement parallels the proof of Lemma 1. 

By following step by step the construction of HI 
as described in Ref. 3, Secs. 4 and 5, one can easily 
establish that there is a linear mapping 

'Y ~ 'Y = L'Y, 'Y E H, 'Y E HI' (5.13) 

of H onto HI' which satisfies (5.12) for every'Y E H. 
If some 'Y E H is mapped into the zero element of HI' 
i.e., if L'Yl = 0, then we have accordingly that 

p~l;'" ;A'(BI X ... X Bs) == 0, 

AI, ... ,As E {E, F}, s = 1,2, .. " (5.14) 

and, consequently, that 

V~~(RI x ... x Sk) == 0, k = 1,2,' . '. (5.15) 

However, (5.15) implies that 'Yl = O. Consequently, 
L has an inverse and the lemma is proved. 

We can immediately infer from the above lemma 
that Theorem 2 is true by taking into consideration 
that (5.8) is true whenever R1 , .•• , Sic satisfy (5.6), 

and by employing the lemma proved above in combi­
nation with the following lemma. 

Lemma 4: The set function W~)(RI x ... x Sk), 
'Y E H(m.n), is uniquely determined for arbitrary 
RI , ... ,Rk E ($3)@m+n, Sl, ... , Sk E ($4)@m+n, ifits 
values on sets R1 , ••• , Sic obeying (5.6) are given. 

Proof' In order to avoid unnecessarily involved 
notation, consider the case when n = 0, which pos­
sesses all the essential features of the general case. 
Write 

W~)(RI x ... x Sk) = ('YI E~m,o)(Rl) 1'Y1) 

'Yl = F~m,o)(Sl) ... E~m,o)(Rk)F~m,o)(Sk)'Y. (5.16) 

Consider the set function 

Z(R(1), ... ,R(m» = ('YI E~m.o)(R) l'Yl) (5.17) 

for arguments 

R = R(l) X .•. X R(m), R(l)"", R(m) E $3. (5.18) 

We immediately infer from (3.26) that the set func­
tion (5.17) is a-additive in each of its arguments 
R(l), ••• R(m). Consequently, its values for any R in 
(5.18) are uniquely determined if its values on the 
family J3 of intervals on fR 3 

R(l) = [0), ... , R(m) = [(m) E J3, (5.19) 

are given, because $3 is the Boolean a-algebra gener­
ated by J3. 

For arbitrarily given [<1), ... , [<m) E J3, we can split 
each of these intervals into 

N. 
[(8) = U Ji:), Ji s) n J}s) = 0, i =F j, (5.20) 

i l =1 

and consequently 

Z(I(l), ... ,I(m» 

Nl N m 

= 2' .. 2 ('YI E(m.o)(J1~) X ... X J}:;:» l'Yl). (5.21) 
il=l im=l 

We want to prove that in (5.21) the contributions 
of terms in which two or more J i(:) have points in 
common can be made arbitrarily small in the limit of 
finer and finer partitions (5.20). Consider first the 
case of all contributions when Jg) and J::) have 
common points for certain values of i l and i2 • If we 
express Erim.o) in terms of E(m.O) by means of (3.26), 
the first term corresponding to the identity permuta­
tion of the indices iI' ... , im is 

1 1\', N m 

-, ,2' . ',2 ('YI E(m.o)(Jg> X ... X J1:;:» l'Yl) 
m.tl=l tm=l 

1 Nl N m 

= -, ,2' . ',2 ('YI El(Jg» , .. Em(J1:;:» l'Yl), (5.22) 
m. '1=1 'm=l 
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where, if we follow the notation introduced in (4.9), 

E;(B1 X B2 X Ba) = Ea.,(B1)Ea..(B2)Ea.,(Ba), 

1X1 = xii), 1X2 = X~i), lXa = XJk), 

B1, B2, Ba E $1. (5.23) 

The contribution to (5.22) of terms for which Jg) and 
J(2) have points in common can be written as 
" 

1, 2 ('YI E1(Jg)E2(Jg) 
m .. ibi2 

N. Nm 

X 2' .. 2 Ea(J::) ... Em(J:;::) I'F!), 
i3=1 i m=l 

(iI, i2) E {(r, s):J~1) n J~2) =;6 0}. (5.24) 

i.e., when we estimate 

(where the primes in 2' denote that the summation 
over is is not taken when S = S1 or S = S2), the 
summation over is (S =;6 S1' S =;6 S2) is not in general 
from 1 to Ns because some of those terms might have 
been taken into account at an earlier stage. Thus we 
arrive at the upper bound 

1 Ntl 

, 2 II ES1(J!Sl)'Y1I . IIEsl(K:S2)'Fs211, (5.30) 
m. ,=1 

with With the help of the Schwarz-Cauchy inequality, 
we derive that the absolute value of (5.24) does not 'FS2 = 2' ... 2' E1(J:~) ... Em(Jt::)'Yl (5.31) 
exceed il im 

for the absolute value of (5.29). As it is easy to see 
(5.25) that 

where 

(5.26) 

As we have, due to the mutual orthogonality of the 
vectors E (J(I)'F .,. E (J(I)'Y that 1 1 , ,1 N, ' 

N, N, 
2 II EiJ!l)'F11 ::;; 11'F11-12 IIE1(J!1)'Y11 2

• 
i=l i=l 

= 11'F1I-1 IIEP1)'Y11 2
, (5.27) 

we see that (5.24) is certainly smaller than 

IIE2(Ki )'F2 11 = sup IIE2(Ki)'Y2 11. (5.28) 
i=l,'" .~Vl 

The above expression becomes arbitrarily small in 
the limit of finer and finer partitions of II and 12 ; 

namely, in that limit the diameter of Kio will converge 
to zero, and consequently IIE2(K

io
)'Y2 11 goes to zero 

due to the fact that X~2), X~2), and Xi 2) have a contin­
uous spectrum. 

There is a finite number of pairs (Sl' S2), Sl > S2' 
Sl, S2 = 1, ... m. The contribution of terms in the 
sum (5.22) corresponding to sets JIS, ) and J:s,) with 
points in common can be estimated by the same 
procedure which led to (5.28). This can be done in a 
number of successive steps, corresponding to an 
arbitrarily chosen sequence of pairs (Sl' S2), Sl > S2' 
which starts with the already treated case Sl = 1, 
S2 = 2. At each step (S1' S2), at the stage (5.24), 

N, N m 

II ES2'Y;.11 2 
::;; 2" .. 2' IIEs2E1(J1:)' .. Em(Jtm)'Y1112 

il=l i m=l 

(5.32) 
where 

N, N m 

'YS2 = 2' ... 2' E1(Jg) ... Em(J:;::)'F1, (5.33) 
i,=l i m=l 

we arrive at an upper bound of the absolute value of 
(5.29) which is analogous to (5.28). Thus we come to 
the same final conclusion; namely that (5.29) vanishes 
in the limit of finer and finer partitions of ISl and Is •. 

Thus we arrive at the conclusion that 

('¥I £(m,o)(1(1) X ... X ](m) 1'F
1

) 

= lim 2' ('FI £(m,o)(Jg) X ... X J!;::) 1'F1), (5.34) 
it," 'im 

where the prime in the above 2' indicates that the 
summation is taken:only over those m-tuples iI' ... im 
for which the intervals Jg) , ... Ji<;::) are disjoint, and 
the limit is for finer and finer partitions (5.20). As we 
have that 

Z(1w, ... , ](m) 

1 = - 2 ('YI £(m,O)(1(r) X ... X ](rm) 1'Y
1
), 

m! (r", ',rm)EG 

(5.35) 

the same conclusion (5.34) applies to each term in 
the above sum. Consequently, we have 

Z(1(1),"', ](m) 

= lim 2' ('YI E(m,o)(J;;) ... E(m,o)(J!;::) I'F1), (5.36) 

where the lim and 2' have the same meaning as in 
(5.34). 
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The validity of the lemma now follows from the 
fact that the same procedure which has been applied 
to E~m.o){Rl) in W~1f) can be applied in the same form 
to F~m.o){SI)'···' Erim.o)(Rk), Frim.o) (Sk)' Thus the 
lemma is proved. 
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APPENDIX: FREE FIELDS AT A POINT 

The Fock-space method, as originally introduced9 

and essentially used since the earliest papers on 
quantum field theory,10 employs the concept of free 
field defined at a point. Such fields, though referred 
to as linear operators, are not at all operators on the 
Hilbert space of states with arbitrary number of 
particles, because they certainly lead outside that 
space when applied to any vectors. This can be easily 
seen from the following: 

The standard way of introducing free fields is by 
first choosing an orthonormal basis 

!1,f2,"', (fll!i) = bii , 

gl,g2"", (gi Igj) = bij , 

.~(k, (k2 + m2)1) = gi(-k, -(k2 + m2)!) (AI) 

in JeU) and Jem, respectively, and then a corre­
sponding basis in Je: 

<I> = s(m.nl,. ® ... ®f.. ® g. ® ... ® g. 
{ mhm2.·.O} 11 ~m:J~ :In' 
n"n2.·· (A2) 

where among the indices iI' .. " im and h ' .. " j m the 
index r appears mr and nr times, respectively. If we 
denote with ar and a: (br and b;> the annihilation 
and creation operators of a particle (antiparticle) in 
the rth state of (AI), then we can write the field 
"operators" as 

cp{x) = CPr/x) + cp:(x), cp*{x) = cp:{x) + cpix) , 
<r) co 

cpix) = IfrCx)a" cp:{x) = "l,f:{x)a:, 
,=1 ,=1 

"" "" 
CPa{x) = "l, grCx)br , cp:{x) = "l, g:{x)b:. (A3) 

r=1 r=1 

Note that ar , a:, b, and b:, as well as cpp{x) and CPa (x) , 
are indeed linear operators with the same domain of 
definition which includes the open linear manifold 
spanned by all the vectors of the form CA2), and which 

8 V. Fock. Z. Physik 75,622 (1932). 
10 P. M. Dirac. Proc. Roy. Soc. (London) A1l4, 431 (1927). 

is everywhere dense in Je. On the other hand, cp!{x) 
and cp:{x) are not taking any vector, except the zero 
vector, into an element of Je, and consequently they 
are not operators in the accepted sense of the word. 
However, when appearing in matrix elements, they 
can be adequately treated in a formal manner so as to 
give meaningful results-a fact which is the basis of 
any perturbation field-theoretical calculation. 

As is well known, the remedy leading to meaningful 
operators is simple and consists in the "smearing" of 
cp{x) with some function hex) from an appropriately 
chosen space of functions,!1 i.e., in considering the 
operators 

00 

cp{h) = "'iUr* I h)a, + {gr I h)b: (A4) 
r=1 

for which, e.g., 
co 

II cp:{h)QII 2 = "'i I(gi I h)12 = IIhll 2 < + 00. (AS) 
i=1 

However, in conventional quantum field theory 
the considered interactions are of the local type and 
expressed in terms of products of field "operators" 
at a point. In investigating the possibility of intro­
ducing relativistic quantum fields at a point, the 
natural starting point could be to try first to formulate 
a mathematically meaningful concept of free field at a 
point, which would share with the conventional con­
cept the formal features which are derivable on 
physical grounds. Since according to the earlier remark 
such a free field could not possibly be a linear operator 
on a Hilbert space, there seem to be two main types of 
approaches to the problem. 

One possibility is to consider as the space of all pure 
physical states a linear space which would be "larger" 
than a Hilbert space, but on which it would still be 
possible to retain (with, perhaps, straightforward 
generalizations) the conventional physical interpreta­
tion. 

The nested Hilbert spaces which have been sug­
gested12 some time ago are providing a structure of 
this type and have been recently used in order to 
define fields as operators on such spaces.13 

We now apply (unfortunately with only partial 
success) the results of this paper to the second alter­
native, in which one keeps essentially a space of pure 
physical states which is equivalent to a Hilbert space, 
but drops the requirement that a free field be a linear 
operator. The main justification for such an approach 
is that in all the calculations in which the formalism 
of free fields is used, one is never concerned with the 

11 A. S. Wightman and L. Garding. Arkiv Fysik 28, 129 (1964). 
12 A. Grossmann. J. Math. Phys. 5, 1025 (1964); Commun. Math. 

Phys. 2, 1 (1966). 
13 A. Grossmann. Commun. Math. Phys. 3, 203 (1907). 
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field "operators" themselves, but rather with matrix 
elements of products of such "operators." These 
matrix elements are defined by formal manipulations 
designed to give a meaning to expressions which, 
strictly speaking, are meaningless as long as the fields 
are really considered to be operators. Hence the 
formalism is built in terms of "expectation values" 
of products of fields taken at points of space-time. 

First we formally derive some relations for these 
"matrix elements." 

By using the fact5 that we can decompose the 
symmetrizer (2.10) in the following fashion: 

SCm.n) - ...!.. sCm-I.n) ~ [1 Z] (A6) 
- , {I.' ..• Z-l.Z+I •... , m} k. , , 

m. Z~I 

where Sl~-:-I:~/ is again a symmetrizer given by the 
formula (2.10) but acting only in the indices appearing 
in the curly brackets, while [1, Z] is an operator 
which transposes the indices I and Z, we can easily 
derive that 

(9':p(x)$ r;::::::: ~:::::lm.n)(XI' ... , Xm; ... , x m+n) 

= i (mr)tfix)${cO;:;;),'" fflr-I.·' ,}(xI " .. ,Xm ; • , • , xm+n) 
r=l nt.···, nr.··· 

- (m + l)t<l>Cm+l,n) (x x ... x .... x ) - {ffl1,···.mr,···} ,"'1, ,m' ,m+n-
n .... ', nr' .. ' (A7) 

A similar formula holds for 9'a(x). 
With the help of (AS), it can be immediately 

derived that more generally for r = 1, 2, ... and any 
<1>1' <1>2 E K: 

X j «l>*cm+r,n)(x ... x Y .,. Y . " Y ) 
1 1 , 'r , 1, 'm , ,m+n 

a ~ x - ... - . , . <I>~m+r,n) 
ay~ ay~ 

x (Xl,"', x 2 , YI"", Ym"", Ym+n) 

X d3
YI'" d3

Ym'" d3Ym+n' (A8) 

A similar expression holds for the antiparticle fields 
9'a(x) and A:(X). 

We desire to replace the description of a pure state, 
given in terms of the families (3.28), and more con­
ventially by the vector <I> in (3.29), by a description in 
terms of set functions assigned to quantities which 
we could calI "field's." Such quantities are required to 
justify the name of "field" given to them by being 
related in simple manner to the field "operators" 
(A7). 

We assign to each space-region (open set in 1R3) d 
and instant t a field p(l1, t) by relating to p(d, t) the 
measure on IR 1: 

N~)(p(l1, t) I B) 

= {~('YI E"+""'(~ x lR"j 1'1'), 
I (lJI'l ECO•H1 )(11 X 1~,3j) IlJI'), 
j~O 

1 E B, -1 ¢ B, 
1,-I1=B, 

11= B, -1 E B, 

(A9) 

which is obviously concentrated at the points I and 
-1. More generally, we define 

OCJ r 

= L L :2 O(Bi1 , •• " Bik ; BiH1 , •• " Bi.> 
1»,n=O k=O lib'" in)EGn 

X \lfl ECtntk.n+r-k)(l1il X ... X d
ik 

X IR 3m X l1ik+l X ... X l1in X IR 3n) Ilf), (AlO) 

where HI' ... , Hr are Borel sets in IR 1 and 

= 
0, 

1 E Bl n ... n Bk , 

-1 E Bk+l n ... n Bn 

11= Bl n ... n Bk 

or -1 1= Bk+l n ... n Br • 

(All) 

We can easily derive the necessary and sufficient con­
dition for the convergence of the series (A8) for all 
choices of 111 , ••• , dr' HI' ... , Hr , r = 1, 2, .... 
In order to do that, note that for any'Y E He m •n ) we 
get from (3.26) and (3.27) 

i(lfl ECm,tll(R) Ilf>1 ::::;; IIlfll, lJI' E H Cm•n ). (AI2) 

In particular, we have 

ECm,n)(fP,3Cm+n» = 1 (A13) 

and, consequently, in that case the equality sign is 
valid in (AI2). 

Any element If of H can be decomposed in the 
form 

If = ~ C If(rn,n) .t:. mn , 
m,n=O 

and we have 
1I't"(m,n) II = 1, (A14) 

OCJ 

I ICmn l
2 = (If I If). (AIS) 

m,n=O 
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From (A12) and (A13), we can immediately infer that 
the above-mentioned condition is 

f (m + k) (n + k - k) ICmnl2 < + 00, 
m.n=O k r - k 

k=O,"',r, n=1,2, .. ·. (A16) 

Therefore, the definition (AlO) is not meaningful for 
all 'Y E H. However, this definition is certainly 
meaningful for all 'Y from the linear manifold 

00 (tn n ) L = U EB EB H u.n , 
m,n=O 1=0 3=0 

(AI7) 

which is everywhere dense in H. 
We note that for each'Y E L we can recover from 

(AIO) all the set functions 

('JI'I E(m,n)(a) I'JI,), m, n = 0, 1,2, .. " (A18) 

for all the argument values 

a = ~1 X ... X ~m+n' (AI9) 

where ~1"", are regions. This we achieve by 
solving the equations 

N'I'(P(~1' t),'" p(~" t)," . p(~r+s' t) 1 {I} 
x ... x {I} x .. , x {-I}) 

= . I (i + r) (j + S) ('YI E(i+r,i+s)(~1 X ... X ~r 
.,1=0 r s 

x IR 3i X ~T+1 X ... X ~r+s X rR 3S) I'Y), (A20) 

which follow directly from (AlO). 
Now, the set functions (3.28) are a-additive in each 

of the separate arguments with domain of values $3 
entering in the R's and S's according to (3.24). Since 
the family of all open regions in rR 3 generates a 
Boolean a-algebra which is identical with $3, we can 
conclude on basis of well-known measure-theoretical 
theorems7 that the set functions (AI8) defined only 
on sets (AI9) uniquely determine the set functions 

('YI E(m.n)(R) I'Y), R E ($3)®(m+nl, 

m,n=0,1,2,~··. (A21) 

However, these are only the set functions of the 
lowest order from the family (3.28) necessary for a 
unique description of a physical state. In order to 
enlarge accordingly the family (AlO), we will introduce 
in addition to the fields p(M also the global energy 
momentum p = (pO, pi, p2, p3). 

To make the notation more compact, define 

pr(ar, t) = P(~1' t), ... , P(~r' t), 

ar = ~1 X ... X ~r' 

pr = (p, ... ,p) (r times), 
(A22) 

Br = B1 X ••• x B,.. 

Then after suppressing t which is common to all fields, 
we write 

N'I'(pT(aT), pS(aS
); pHS 1 {I}' x {_l}S x BT x BS

) 

= I (m + r) (n + S) 
m.n=O r s 

X ('YI E(m+r.n+s\ar X rR3m X as x 1R3n) 

X F(m+T,n+s)(BT X IR 3m X BS X IR 3n) I'Y). (A23) 

By the same argument as the one applied earlier on 
(A20), we conclude that for'Y E L we can recover all 
the set functions 

('YI E(m,n)(R)F(m.n)(s) I'JI), R, S E ($3)®(m+n), 

m, n = 0, 1, 2, .. '. (A24) 
Tn general, we define 

N'I'(pT'(ar,), pS'(aS
,); pT,+S,; ... ; pTk(ark), p'k(a'.); 

pTk+Sk 1 {IY' x {-I}"I X BTl X BSI 

x··· X {IY' x {_I}S' x B'k x BSk) 

mJ,=o" ·m.~=o(m1 ~ r1) (n1 ~ S1) ... 

x ('YI E(m,+T"n1+s')(aTI X 1R3ml X aSI x rR 3n,) 

X F(m'+Tlonl+SI)(B~1 x IR 3m, X BS' X IR 3n,) ... \'JI') 

(A2S) 

and deduce that from the above set functions we can 
recover any of the set functions (3.28). Consequently, 
the family of all set functions (A2S) determines 
uniquely the physical state represented by the normal­
ized vector'Y E L. 

In order to establish the connection with the 
conventional treatment of free fields, consider 

N'I'(' .. pTk+Sk; pT(aT), pS(aS); pT+S; 

pTHl(arH'); •. ·1· .. x BTk X BSk x {IY 

x {_I}S x Br x BS x {I yk+1 x .. -) 

= f ... (m + r) (n + S) ... ('YI ... F(m+T.n+s) 
m,n=O r s 

X (BTk X rR 3( m+r-rk) X BSk X IR (n+s-sk » 

X E(m+r.n+s)(ar X rR3m X as x 1R3n) 

X F(m+T,n+s)(BT X rR 3m X BS X rR 3n) 

X E(m+r.n+s)(aTHI X 1R3(m+r-rk+l) 

X aSHI X IR 3(n+8-'k+I» ••• I'Y). (A26) 

Note that in writing (A2S) in the form of (A26) we 
have taken into account that, for fixed rand s, all 
the terms under the summation sign in (A26) for 
which 

mi + ri :;r6 m + n, ni + Si :;r6 n + s, i = 1, ... , k 

(A27) 
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are zero due to (3.27), and in addition the fact that 
Hu.n are mutually orthogonal for different j's and 
l's. If we write 

'Y~i.Z) = ... eJ CJF<i.Il(Brk x IR 3<i-rk) 

X BSk x 1R30-Sk») .•• 'Y, 

'Y~i.Z) = ( j ) ( 1 ) •.• E(i'Z)(/1'Hl X 1R3(;-rHl) 

rk+1 Sk+l 

x /1SH1 x 1R3(!-Sk+1») ... 'Y, (A2S) 

then (A26) becomes 

mtJm ~ r)(n: S) 
X ('Yll E(m+r.n+s)(/1r X 1R3m X /1s X 1R3n) 

X F(m+r.n+s)(Br X IR 3m X BS X IR 3n) I'Y 2), (A29) 

where 'Y1 and 'Y2 are the vectors with the projections 
in H(i·l) equal to, respectively, 'Ytz) and 'Y~.z) which 
are given by (A2S). In order to simplify the notation, 
take s = O. If 

then 

exists, where the limit is taken for /1T shrinking to 
x', and 

(A31) 

with 1~11,' .• , I~,I denoting the volumes of the three­
dimensional regions ~1' ••• , ~,; namely, we get from 

(3.36), (3.3S), and (A29) that (A30) is equal to 

if r dym<1>~i.O)(x', ym) ':la
r 

':l am <1>~i.O)(X', ym), (A32) 
~ t uxo uyo 

where 

o a 0 if if '§ 
ox~ = ox~ ... ox~' oy~ = oy~ ... oy?,,' (A33) 

Hence by combining (A26) and (A2S) (in which we 
have taken s = 0) with (A32), we get 

N~)('" ; p'(x');" ., ... X {lY X ... ) 

= 1!~.,~" N~)('" ; p'(/1');, .. , ... X {lY X •.. ) 

= i: (m + r) im+' r dym 
m=O r Jt 

X <1>(r+m.o)(x' ym) a if <1>(r+m.o)(x' ym) 
1 '':l • ':l m 2 , 

UXO uyo 

where we have introduced the symbol 

p(xj = ;p(x1) ... p(x,); 

(A34) 

(A35) 

We call p(x) a field at a point. Comparison of (A34) 
and (AS) shows that we can formally write 

N~)(' .. ; p(x1) ... p(x,); ... , ... X {l Y X ... ) 

= i' (<1>11 : ( 1J?:(X1) o~~ lJ?iX1») ... 

(IJ?:(X,) o~~ IJ?p(X'»): 1<1>2)' (A36) 

For antiparticles we get a similar formal relation by 
replacing {lY in (A30) by {-IV and IJ?p by lJ?a' 
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Orear Behavior in Potential Scattering. 11* 

PORTER W. JOHNSON 

Department of Physics, Case Western Reserve University, Cleveland, Ohio 

(Received 24 May 1968) 

Here we will extend certain results obtained in a previous paper [J. Math. Phys. 9, 712 (1968)] con­
cerning high-energy large-angle scattering upon nonsingular potentials V(r) which are even in rand 
analytic in a finite strip about the real r axis. (In the previous paper, it was required that the potentials 
have a larger domain of analyticity than is required here.) The scattering amplitude is compared with the 
first Born approximation for this wider class of potentials. 

1. INTRODUCTION 

In a previous paperI it was established that there is 
a class of potentials for which the corresponding 
differential cross section decreases very rapidly with 
respect to energy at fixed nonforward scattering angles, 
thus bearing some formal similarity to the properties 
of elastic pp scattering which were first pointed out 
by Orear.2 The class of central potentials VCr) con­
sidered in I was even in r and analytic in the region 
(1m r)2 - (Re r)2 < r~, where r 0 > O. It was shown 
that for a subclass of these potentials the scattering 
amplitude I(k, 0) obeys the following relation: 

For all b < ro, in the limit as k -'>- 00 for fixed 0, 

f(k, 0) = O(e-2kb sin t8). (1.1) 

For the purposes of this paper we say that I has 
Orear behavior if it satisfies this order relation. In 
establishing this order relation in I, it was necessary 
to place conditions upon V which were such that the 
first Born approximation exhibited Orear behavior as 
well. 

When V was further restricted, the following limit 
involving I and the first Born approximation 11 was 
obtained: 

lim f(k, 0) = 1. 
k-+oc; fI(k, 0) 

8,0 S fixed 

(1.2) 

[Relation (1.2) is more restrictive than (Ll), because 
(Ll) gives an upper bound upon the asymptotic 
behavior of I, whereas (1.2) precisely indicates this 
asymptotic behavior.] 

As will be seen below in Lemma 2, if the potential 
V(r) is even in r, is analytic in the strip 11m rl < b, for 
some number b > 0, and satisfies certain growth 
conditions in the strip, the corresponding first Born 
approximation satisfies an order relation of the form 
(1.1). This brings up the question of whether the 

* Supported in part by the U.S. Atomic Energy Commission. 
1 P. Johnson, J. Math. Phys. 9,712 (1968). It will be referred to as I 

hereafter. 
• J. Orear, Phys. Rev. Letters 12, 112 (1964). 

additional analyticity assumed in I is necessary for 
relation (Ll) to apply to the entire amplitude. For 
example, the potential 

is not analytic in the region considered in I for any 
positive number ro, whereas it is analytic in the 
region 11m rl < b. In this paper we will show that the 
scattering amplitude corresponding to this potential, 
as well as other potentials which are even in rand 
analytic in a finite strip about the real r-axis, exhibits 
Orear behavior. 

Within the class of potentials under consideration 
here the relation (1.2) is more restrictive than (1.1). 
The first Born approximation can easily be shown to 
be the high-energy, fixed-momentum ttansfer limit of 
the scattering amplitude. On the other hand, the large­
momentum transfer, fixed-energy limit of I is in fact 
not iI-this latter limit can most easily be examined 
through Regge poles. The limit in (1.2) is intermediate 
to these two well-known asymptotic limits and is not 
generally valid in potential scattering. In fact, as has 
long been known, (1.2) is not correct for the Gaussian 
potential, V(r) = A exp (-ar2). Precise necessary and 
sufficient conditions upon the potential for the validity 
of (1.2) are, however, not known. In this paper, we 
will find conditions upon V in our class which are 
sufficient for the validity of (1.2). 

Let us make the initial restriction that VCr) is 
square-integrable over r, so that its three-dimensional 
Fourier transform V(q) exists.3 For definiteness let us 
further restrict the potential such that V(q) decreases 
exponentially in q for large q; that is, there must exist 
a number d > 0 such that 

lim W(q) I ead = O. (1.3) 
a-+ oc; 

3 Our convention for V(q) is V(q) = (21T)-3 S dxV(x) exp (-iq . x). 
We will adhere to this convention for momentum-space representa­
tions of other functions. The results of this paper can be extended 
trivially to complex-valued, energy-independent potentials as well. 
For purposes of notation, we write the equations under the assump­
tion that the potential is real for physical r. 

946 
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In nonpathological cases, this condition implies that 
VCr) is even in r and analytic in the strip 11m rl < d, 
as is seen in the following lemmas: 

Lemma 1: If the integral S: dqq W(q) I eAa con­
verges for A < b, the Fourier transform VCr) exists, 
is analytic in the region 11m rl < b, and is bounded 
as Ir I -+- 00 within the strip. Within this region of 
analyticity, the relation VCr) = V( -r) is valid. 

Lemma 2: If V(r) is even in r and analytic in the 
strip 11m rl < b and has the property that 

L: ds Is + idll V(s + id)1 

converges for d < b, then relation (1.3) is valid for 
d< h. 

It happens that one can state the conditions sufficient 
for the validity of (1.2) more generally and more 
naturally in terms of V(q); in this way we will not be 
limited to any specific representation of V(r) , even 
though the conditions placed upon V(q) certainly do 
imply that VCr) be even in r and analytic in a strip of 
finite width about the real axis.4 

For our purposes, it is advantageous to factor the 
potential; that is, to write VCr) = vl (r)v2(r). With this 
factorization, one can write the Born series formally 
as 

where 

(1.5) 

The kernel W is square-integrable, and it will be 
seen that simple upper bounds upon I WI lead to 
rather economical bounds upon If I· The impetus of 
this paper is to obtain a bound upon I WI which leads 
to bounds upon If I and If - fll which are sufficient 
to imply (1.1) and (1.2). 

It is convenient to place conditions upon VI and V2 

which are sufficient for the validity of (1.1) and (1.2). 
Then (1.1) and (1.2), respectively, will be valid for the 
class of potentials V for which these conditions can be 
met by a suitably chosen factorization. 

, One can construct the following representations for the class of 
potentials which is even in r and analytic in the region 11m rl < b: 

V(r) = S;' drxa(rx) exp (-rxb) cos rxr, 

V(r) = S;' drx'T(rx) r2 + (b
I 
+ irx)2 r2 + (b

I 
_ irx)2 . 

We could obtain conditions upon (1 or 'T, which would be sufficient 
for (1.1) or (1.2). We have avoided use of these rather cumbersome 
representations by considering V(q) directly. 

In Sec. 2 it is shown that the following conditions 
upon the Fourier transforms vl(q) and V2(q) are suffi­
cient for (1.1) with b < roo 

There exists a number A> -2 and numbers Kl , 

K2 , and ro > b such that 

I vl(q) I ~ Klq" exp (-qro), (1.6a) 
2 2 

I 
~ vl(q) I ~ K1roq). exp (-qro). 
dq 2 2 

(1.6b) 

In Sec. 3 it is shown that the following conditions are 
sufficient for the validity of (1.2): 

(1) There exists a number b > 0 and a number 
p > 2 such that5 

lim lV(q) I eqO 
• qn = 0 for n < p, (1.7a) 

q--+oo 

1· 1 -qO 1 0 ror > 1m -- e - = I' n p. 
q--+oo lV(q) I qn 

(1.7b) 

(2) For a suitable factorization of V, there must 
exist positive numbers Cl , C2 , and b and a number 
s > 1 such that 

I ( )1 < C 1 -qO 

v~ q - i (1 + q2b2)" e , 

I ~ V ( ) I < C b 1 e-qO 

dq ~ q - ~ (1 + q2b2)S • 

(1.8a) 

(1.8b) 

(3) It is necessary that 2s + 1 > p, where p is given 
in (1) and s in (2) above. 

In Sec. 4 we discuss the classes of potentials for 
which the above results are proved. 

2. OREAR BEHAVIOR 

Here we will establish that conditions (1.6) upon 
the Fourier transforms of the potential factors of V 
are sufficient to imply the bound (1.1) for the entire 
scattering amplitude. We will consider only the case 
A = -1 explicitly. The generalization to the case 
A> -1 follows trivially, and the case -2 < A < -1 
can be obtained with additional effort. 

The kernel W, which was written formally in Eq. 
(1.5), has the following explicit representations: 

W(ql> q2; k) =fdP 2 ~2 . Vl(ql - p)v2(p - q2). 
p - -lE 

(2.1) 

• The limit (1.7b) may not exist if the function V(q) oscillates too 
rapidly as q-- ro, as in the case V(q) = exp(-qb)(sinqb/qb)2 for 
n > 2. In such cases one can define an alternative limit, namely 

lim Soo (dp/pn) exp (-pb)/S,:, dp I V(q)I, 
Q-+OO q .. 

which clearly reduces to (1.7b) if the latter exists. If one uses such 
limits here, he can prove that Eq. (1.2) is valid when the limit there is 
also taken in this manner. 
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The object here is to obtain a bound upon W which 
depends only upon ~ = q2 - q1 and k. For this 
purpose it is convenient to consider the function 

where 

I(ql' q2; p) = f dOpg(ql - p)g(p - q2), (2.2) 

In Appendix A the following bound upon I is ob­
tained6 : 

l(q1' q2; p) ~ (87T/p2)Ko(~b). (2.3) 

One may thus use the bound (2.3) along with Eq. 
(1.6a) to bound the imaginary part of Was follows: 

11m WI ~ (47T2/k)KoC~b) . K1K2. (2.4) 

The real part of the kernel W can be written as a 
principal-value integral over p. In order to bound 
Re W it is necessary to rewrite it in terms of non­
singular integrals. One can express Re W in terms of 
the following nonsingular integral: 

Re W = k e~ {u 2h(U) - h(!)}, (2.5) Jo u 2 
- 1 U 

where 

h(u) = f dOlV1(ql - ukl)V2(ql - ukl). 

We use this nonsingular integral in Appendix B to 
obtain a bound upon Re W.7 Here we state the result: 

If we make the restriction kb > I, for every number 
e such that 0 ~ e < t there exists a number M(e) such 
that 

IW(ql, q2; k)1 ~ [M(e)b/(kbnKo(~b). (2.6) 

For convenience let A = M(e)b/(kb)<. We can now 
bound the scattering amplitude by the following 
series: 

00 

If(k,~)1 ~ Ifl(~)1 + IAnGnC~), 
A~l 

where 

GnC~) = f dpl ... dPng(lql - Pll)Ko(lpl - P21 b) ... 

where 

Ko(IPn-l - Pnl b)g(IPn - q21) 

= _1_ fdx[g(X)]2[p(x)re-ill.X 
(27T)3 ' 

P(x) =fdAeill'XKo(~b) = 7T
2 

1 !' 
2 (x 2 + b2

) 

• For the modified Bessel function Ko(x), we follow the convention 
of I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, 
and Products (Academic Press Inc., New York, 1965), p. 958/f. 

7 Techniques entirely analogous to those necessary to establish 
this result are exhibited in P. Johnson, J. Math. Phys. 9,1633 (1968). 

We can thus write 

If(k, ~)I < (47TC)fdXe-ill.X 1 1. 
- (x2 + b2? 1 - AP(X) 

(2.7) 

We may integrate over the angular part in Eq. (2.7) 
to obtain Ci oo 

1 1 If(k, ~)I < - dxx sin ~x 2 • 
- ~ 0 (x + b2)2 1 - AP(X) 

Since g(x) and P(x) are even functions of x we may 
write 

Jf(k ~)I C 100 

d il1x 1 1 
, = 2i~ -00 xxe (x 2 + b2)2 1 - AP(X) . 

Now for sufficiently small values of A (i.e., for k 
sufficiently large) we can distort the contour of x 
integration arbitrarily closely to the line 1m x = b. As 
a result, for every number d < b there exists a suffi­
ciently large value of k such that 

11 - AP(X))-l ~ 2 

for 1m x = d. Then one has the bound 

C' foo+id x 
If(k, ~)I ~ ~ e-

11b 
. dx (2 b2)2· 

Ll -oo+.d x + 
Since this latter integral is bounded, we have thus 

established that for k sufficiently large the scattering 
amplitude is bounded as follows: 

If(k,~)1 ~ Ce-2kdsin!o 

for every number d < ro. We have thus shown that 
condition (1.6) is sufficient to establish that the entire 
scattering amplitude exhibits Orear behavior [Eq. 
(Ll)]. We have used the bound (2.6) upon the kernel 
W to show that the nth term of the Born series is 
bounded by Cne-~d and that the constants Cn are such 
that the sum of the series is bounded by a term 
Ce-j,d as well. 

3. THE ASYMPTOTIC LIMIT 

In this section we will show that conditions (1.7) 
and (1.8) upon the Fourier transforms of the potential 
factors of V are sufficient to guarantee that the high­
energy fixed-angle limit of/is /1' as described in Eq. 
(1.2). The procedure is to obtain a bound upon the 
modulus of the kernel W which was defined formally 
by Eq. (1.5) and written explicitly in Eq. (2.1). 
Naturally, the bound upon I W) must be more restric­
tive than (2.6), because one wishes to establish the 
more restrictive condition (1.2) here. 

It is convenient to define the following functions: 

I(ql, q2; p) = f dOpfs(ql - p)fs(p - q2), (3.1) 
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where 

f( ) 1 -qb 

s q = (1 + q2b2)S e . 

A representation of!s(q) is considered in Appendix C, 
Eq. (C2). The bound (C4) is established there also. 
It is shown in Appendix D using the bound (C4) that 
for s > 1 there exists a number D(s) such that 

One can use the bound along with condition (I.8a) 
to bound the imaginary part of Was follows: 

11m W(ql,q2;k)1 S [-7TD(s)/2kb2]!s(~). C1C2 • 

It is again possible to bound the real part of W by 
writing the principal-value integral as a nonsingular 
integral and using the inequality (3.2) along with 
conditions (1.8). We state the consequence here: 

For every number E such that 0 s.. E < ! there exists 
a number M(E) such that, for kb > 1 and s > 1, 

IW(ql, q2; k)1 s [M(E)D(s)/(kb),b]fsCM· (3.3) 

Let A = M(E)D(s)/(kbYb. We can use this bound upon 
I WI to bound the quantity I/(k, 0) - II(k, 0)1 as 
follows: 

00 

If(k, 0) - fl(k, 0)1 s ! Angn(~)' 
n~1 

where 

gn(M = f dpi ... dPnfsCk' - PI) 

X f.(PI - P2) .... f.(Pn-l - Pn)fsCPn - k). 

The following lemma is established in Appendix E: 
For every number s > 1 there exists a number 

N(s) such that 

J dpfs(q - p)fs(p - r) S N(s)f.(q - r). (3.4) 

Thus, we may bound II - III as follows: 

00 

If(k, 0) - Uk, 0)1 sfsCMN(s)! [AN(sW 
n=l 

If we choose k to be so large that },N(s) < 1, one can 
then write 

I/(k, 0) - II(k, 0)1 S!s(~)A[N(s)J2[l - AN(s)]-I. 

(3.5) 

As a consequence we have established the following 
order relation valid in the limit as k ->- 00 with 
o ¥- 0 fixed: 

f(k, 0) - il(k, 0) = 0 (kL. e-2hro sin!8) 
orO:s E < t. 

One can now compare this with the restriction (1.7) 
upon V(q) or, equivalently, upon Il(k, 0). One can 
then conclude that 

I(k, 0) - II(k, 0) = o [/l(k, 0)]. 

This relation is equivalent to (1.2), so that the antic­
ipated results are obtained. 

4. DISCUSSION 

It is shown in Sec. 2 that conditions (1.6) upon the 
Fourier transform of the potential factors of VCr) are 
sufficient to guarantee that the corresponding scatter­
ing amplitude exhibits Orear behavior [Eq. (1.1)]. As 
a result of Lemmas 1 and 2 being applied to the po­
tential factors, one can see that the potentials being 
considered are even in r and analytic in the strip 
lIm rl < b. Let us consider a slightly pathological 
example, namely 

VI = v(q) = ft(a - q), for q < a, 

= 0, for q ~ a, 

where ft and a are positive numbers. These functions 
satisfy (1.6) for A = 0 for any value of ro. The corre­
sponding potential 

VCr) = (47T
ft

)2e(1 - cos a;4 - ar sin ar)2 

satisfies (1.1) for any value of ro. 
In Sec. 3 the more restrictive conditions (1.7) upon 

V(q) and (1.8) upon the Fourier transform of the 
potential factors are shown to imply that (1.2) is valid 
for the scattering amplitude and its first Born term. 
The conditions (I .8) automatically imply that VI (r) and 
v2(r) and thus V(r) are bounded everywhere in the 
region lIm rl S ro, as is seen from the following 
lemma.s 

Lemma 3: If a function v(lqi) = v(q) satisfies the 
condition that 

100 

dqqeqro Iv(q)1 

converges for some value of ro > 0, then the three­
dimensional Fourier transform VCr) exists and has the 
following property: There exists a constant M such 
that IvCr)1 < M for all r such that IImrl S roo A 
specific potential which is not so bounded and, thus, 
for which we have not established (1.2) is the example 

VCr) = k(r2 + r~)-~e-I'(r·+ro·)t. 
8 Note that the above example would not be expected to have this 

property, since the corresponding first Born approximation is zero 
for q > 2a, whereas this property would not be expected to be true 
for the entire scattering amplitude. 
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Let us also note that conditions (l.8) contain the 
implicit requirement that r6 V(r) -+ 0 as v -+ 00 through 
positive real values. In I it was necessary to require 
only that r3 V(r) -+ 0 as r -+ OCJ for the special class of 
potentials. 

One can show that the following relatively more 
general conditions upon 

along with condition (1.7) upon V(q), are sufficient for 
the validity of (1.2). 

There exist numbers C, b, A, and s such that 

I ( )1 < C 1 -ab 

v~ q - q2A (1 + q2b2)" e , 

I 
d () I < Cb 1 -ab (4 1) 

dq v~ q - q2A (1 + q2b2)" e, . 

where A < 1, A + S > 1, and p < 2s + t. Details will 
not be given here. These latter conditions contain the 
implicit requirement that X4 Vex) -+ 0 as x -+ 00 and 
are also sufficient to imply that Vex) is bounded in the 
region 11m rl ~ b. 

Finally, we recall that conditions (l.8) in conjunc­
tion with (1.7) are sufficient to imply (1.2) with s > 1. 
We will show here that they cannot possibly be 
sufficient to imply this for s = O. Indeed, let v1(q) = 

2 

v(q) = Ae-qb • This implies that VCr) = Cf(r2 + b2)4. 

One can show that for this potential9 

il(k, £J) ,-.., k2e-2kb sin to, 
as k-+ 00 for £J¢O fixed, 

t; (k £J),...., k4e-2kb sin to 
~ 2 , , 

as k -+ OCJ for £J¢O fixed, 

so that the limit (1.2) cannot be valid for this potential 
for every value of the coupling strength C. 

We note that conditions (1.7) and (1.8) are merely 
sufficient to establish convergence of the amplitude to 
the first Born approximation at high energies for 
fixed angles of scattering. Let us also recall that (1.2) 
is correct if (1.7) and (1.8) are met for s > 1 with 
2s + t > p in addition. The fact that the above 
example satisfies Eq. (1.7) with P = 2 and Eq. (1.8) 
with s = 0 and yet fails to obey the inequality (1.2) 
indicates that the above procedure overestimates the 
scattering amplitude by only a few powers of k in a 
region in which the amplitudes are decreasing ex­
ponentially with k. 

It has been shown here that for certain potentials 
which are even in r and analytic in a strip of finite 

• P. Johnson, to be published. 

width about the real axis, the corresponding scattering 
amplitude exhibits Orear behavior. We have further 
made it plausible to believe that only potentials which 
are even in r and analytic in a strip as considered 
above can exhibit such behavior, if one restricts 
considerations to energy-independent nonsingular 
potentials. We have also shown that the first Born 
approximation is the high-energy fixed-angle limit of 
the scattering amplitude for a more restrictive class. 
The question of asymptotic behavior for potentials 
for which / -H /1 for fixed angles at high energies will 
be examined in another paper. 

APPENDIX A 

We want to prove the bound (2.3) of I defined by 
(2.2). We choose to write 

I = f dQjlg(ql - p)g(p - Q2), 

where 
g(k) = k-1e-kb. 

We rewrite I as an integral over the Fourier transform 
of g(k) which is 

g(x) = 47Tj(b2 + x 2). 

It is straightforward to write I in the formlO 

1= ?: f+ldu roo dr sin Qr sin pr[r~ + .c (1 _ U2)]-1 
P -1 Jo Q 4 

X exp -~[r~ + ~ (1 - U
2)r. 

We now integrate the r integration by parts and 
obtain the bound 

4 f+l i oo exp {-Mr~ + 1r2(1 - u2)]t} I I I < - du d r --=-~----'~----''--'---::--,----.:. 
- p2 -1 0 [r~ + 1r2(1 _ u2)]! 

87T 
= 2Ko(~ro). 

p 

The bound upon I is thus obtained. 

APPENDIX B 

Let us write Eq. (3.5) in the form 

Re W = kllu~U~2I[h(U) - h(~)J + kfdUh(~). 
(BI) 

The second term in (BI) may be bounded using the 
conditions (1.6) (for A = -1) and the result of 
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Appendix A, to obtain 

k I fdUh(~) I $; 8
k
7T Ko(f:..ro) f dUU2, (B2) 

so that this part of Re W clearly satisfies the desired 
bound. 

Now we wish to bound 

il U2 
B = k du -2-- g(u), 

o u - 1 
(B3) 

where g(u) = h(u) - h(1Ju). 
Using techniques analogous to those described in a 

previous paper7 we use Holder's inequality to bound 
B as follows: 

IBI $; k[ildUU2Ig(U)I]I/r[il dUU
2
2 I g(u) 1]I/S, 

o 0 (1 - u )' 
(B4) 

where l/r + l/s = 1. 
The first term in (B4) can easily be bounded in a 

manner similar to (B2) above. To bound the second 
term we use the inequalities 

Ig(u)1 $; f dV Ig'(V)1 

and 

Ig'(V)1 $; !; Ko(f:..b)· :3 
'f.he latter inequality is obtained from conditions 
(1.6a) and (1.6b). 

We thus have a bound of the form 

IBI < ~ K (f:..b) (1 du Jl dV (B5) 
- (kb)I/S 0 Jo (1 _ u2)" " V 3 • 

The integral on the left side of (BS) converges for 
1 $; s < z; thus for every number e such that 0 $; 
e < ! there exists a number N(e) such that 

IBI < N(e) K (f:..b). 
- (kb)' 0 

The result is thus proved. 

APPENDIX C 

Let us define the function hs(q) as follows: 

h ( ) = 1 e-qb 
s q (1 + q2b2)" . 

We construct the integral representation 

(<to 2 2 

h.(q) = Jo dxp.(oc)e-«b -q /4«, 

(Cl) 

(C2) 

wherell 

We will show here that for all s ~ 0 there exists a 
number C(s) such that 

< b c(s) 
ps(oc) - (7TOC)t (1 + b2oc)2S' (C4) 

From (C3) we can bound Ps(oc) as follows: 

( ) < b 1 1 (<to du 8-1 -b"u 

P8 oc - (7TOC)1- (4b2)";' Jo res) u e 

b 1 
= (7TOC)1- (2b2oc)" • 

(C5) 

or 

b 
gl(OC) $; (7TOC)! (A. + 1)" (C6) 

As a result, g2(OC) is given by 

b 1 1 
g2(OC) = J7T r(s)(4b2)";; 

X (00 du (~)S-l e-b'U-[U/4b2«h<+a)] 

J;.a (u + oc)"-t oc 

where 

A 1 
fl = 1 + A 4ocb2 • 

Now for fl > 0, 

p,"+le-fJ. $; e: 1)"+1= B(s). 

11 Note that p,«(1.) ~ 0 for (1. ~ O. 



                                                                                                                                    

952 PORTER W. JOHNSON 

Thus, 
gllX) ~ 4b * B(s) (1 + A)S. (C7) 

(171X) A 
As a result of (C5), (C6), and (C7), the inequality (C4) 
is valid for sufficiently large choice of C(s). 

APPENDIX D 

We want to consider the function I(ql' q2;P) which 
is defined as follows: 

I(ql, q2; p) = f dD.ph.(gl - p)h.(p - q2), 

where hiq) is defined in Appendix C. We will show 
that for s > 1, there exists a number D(s) such that 

I( . .) < D(s) 1 e-Ab 
ql, q2' P - p2b2 (1 + Ll2b)' . 

We use the integral representation for hs(q) shown in 
Appendix C. In terms of this representation, we are 
allowed to write the Fourier transform of h8 (q), which 
we call lzs(X) , as follows: 

1z8(X) = ioodlX(4171X)~P.(IX) exp [-IX(X2 + b2)]. 

Thus we may write our function I as follows: 
00 

I(ql' q2; p) = 17~P f f dlX dP(IXP)~ P8(IX)P.(P) 

o 
X exp [-(IX + P)b2]J(ql' q2; k; IX, P), 

where 

If sin p(x - y) 
J(ql, q2; p, IX, P) = dx dy Ix _ yl 

x exp [-(IXX2 + Pl)] exp [-i(q2X - qlY)]' 

The following inequality can be derived: 

4173 1 1 IJI ~ - -- -! exp [-Ll2/4(1X + P)], 
p IX + P (IXP) 

so that 
00 

I ~ - dlX dPP8(IX)P.(P)--1617ff IXP 

p2 IX + P 
() 

X exp [-(IX + P)b 2 
- Ll2/4(1X + P)]. 

Define the new variables u = IX + p, V = (3 and re­
write the above inequality as follows: 

I ~ 1617100 

du exp (-Ub2 _ Ll
2

) 
p2 () U 4u 

x i
U 
dvv(u - v)ps(u - V)P8(V) 

= 
3217100 

du exp (-Ub 2 _ Ll
2

) 
p2

0 U 4a 

x iU/2dVV(V - V)P8(U - V)P.(v). 

One may now use the bound upon P.(IX) obtained in 
Appendix C to bound I sequentially as follows: 

So that 

I ~ 3217(C(S)b)2B(t, 2s _ %) (00 du 1 
P Jo (u)* (1 + b2u/2Y 

X exp ( -ub2 
- ~~). (D1) 

One may use relation (1) above to write the following 
bound upon I: 

1< H exp (-Llb)b
2 
B(l. 2 _ l.) 

_ 2 2, S 2, 

P 
(D2) 

where 

H = 3217C(S)2B(%, 2s - t). 

Also, one may obtain the following bound upon I 
from (Dl): 

I ~ H . 48 
-- exp -ub2 

- -i
OO 

du ( Ll
2

) 

o u2S+! 4u 

1 (2b)2s-t = 2(2K)lf 6 K 2s-t(Llb). (D3) 

Now Kv(x) --+ [17~-;(2x)l]e-x as x --+ 00, so that for 
Llb > 2s - t there exists a number c(v) such that 
KvCLlb) ~ [c(v)j(Llb)t]e-t.b. As a result of (D2) and 
(D3), one can establish that there exists a number 
D(s) for s > 1 such that 

I ~ D2(s~ h.(Ll). 
pb 

\ 
APPENDIX E 

We wish to consider the function 
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where h.(q) is defined in Appendix C we use the 
representation for h.(q) in Appendix C to write 

3
00

3 

TT'J:ff ( rxf3 )'J: Q.(f1) ="8 drx dfJp.(rx)p.(fJ) rx + fJ 

o 

X exp [- f12 - (rx + fJ)b2]. 
4(rx + fJ) 

We use the bound upon P. obtained in Appendix C 
to write 

X exp [_ f12 - (rx + fJ)b2]. 
4(rx + fJ) 

JOURNAL OF MATHEMATICAL PHYSICS 

One may make a transformation of variables to write 

Q.(f1) ~ (TT)!b
2 

c2(s) roo du exp (-Ub2 _ f12) 
4 Jo ut 4u 

rU
/
2 fJ (u - fJ) 

x Jo dfJ (1 + b2fJ)2 S [1 + b2(u _ fJ)]2. 

< [C(s)b )2( TT)! roo du 1 

- 4 Jo (u)l (1 + b2u/2)2. 

x exp (-ub2 - f12/4u) . i
U

/
2 dfJfJ 

o (1 + fJb2)2. 

If we make the restriction s > I, we can write 

Q.(f1) ~ [C(S)]2TTf B(2, 2s _ 2) roo du 1 
4b2 Jo (ui (1 + b2u/2)2. 

X exp (-ub2 - f12/4u). 

We may bound this integral using the same techniques 
employed in Appendix 0 to show that for s > 1 there 
exists a number N(s) such that 

Q (f1) < N(s) -~b 
• - (1 + f12b2)" e . 
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by the existence of a null hypersurface-orthogonal Killing vector, which is also a four-fold degener­
ate Debever vector with vanishing covariant derivative, and therefore are a special case of the class 
of plane-fronted gravitational waves. 

1. INTRODUCTION 

It is well known that the quadratic differential form 
(QDF) 

ds2 = gllv dXIl dxv 

= rx du 2 
- 2y du dv - fJ dv2 

- e"'(dx2 + dz 2
), 

gllv = gllv(X, z), fl, 'JI = 0, 1, 2, 3, (1.1) 

if .i and z are restricted by the equations 

:i +.i" = 0, 

;i = z', -I :.. 
X = -z, 

where 

~ I(x, z) =1, ~ f(x, z) =f'. ox oz 

(1.2) 

(1.3) 

is form-invariant under the coordinate transformation 

.i = .i(x, z), z = z(x, z) 

It is a consequence of the field equations that " 

* Supported by the Aerospace Laboratories of the Office of 
Aerospace Research, U.S. Air Force. 

t Present address: Department of Physics, Franklin and Marshall 
College, Lancaster, Pa. 

defined by 
(1.4) 

satisfies Eq. (1.2), so it is customary to choose 
.i = ',thereby reducing the number of dependent 
variables to three and simplifying the field equations. 
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where h.(q) is defined in Appendix C we use the 
representation for h.(q) in Appendix C to write 

3
00

3 

TT'J:ff ( rxf3 )'J: Q.(f1) ="8 drx dfJp.(rx)p.(fJ) rx + fJ 

o 

X exp [- f12 - (rx + fJ)b2]. 
4(rx + fJ) 

We use the bound upon P. obtained in Appendix C 
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X exp [_ f12 - (rx + fJ)b2]. 
4(rx + fJ) 

JOURNAL OF MATHEMATICAL PHYSICS 
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Q.(f1) ~ (TT)!b
2 

c2(s) roo du exp (-Ub2 _ f12) 
4 Jo ut 4u 

rU
/
2 fJ (u - fJ) 

x Jo dfJ (1 + b2fJ)2 S [1 + b2(u _ fJ)]2. 

< [C(s)b )2( TT)! roo du 1 

- 4 Jo (u)l (1 + b2u/2)2. 

x exp (-ub2 - f12/4u) . i
U

/
2 dfJfJ 

o (1 + fJb2)2. 
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Of course, , can only be chosen as one of the 
variables if the expression ex{3 + 1'2 is not constant. 
In this paper we find and discuss the mathematical 
properties of the most general solution of the Einstein 
vacuum field equations for the QDF (Ll) if ex{J + 1'2 
is constant. 

2. SOLUTION OF THE FIELD EQUATIONS 

Assume that ex{J + 1'2 is constant. Since 

(2.1) 

we must have , ¥:- O. In addition we see that, if we 
set 

ex = lei ri, {J = I" p, I' = lei y, 
u = I CI-! ii, v = ICI-! V, 

in the QDF (1.1) we obtain 

ds 2 = oc dii2 
- 2'9 dii dv - (J dv2 

- e'P(dx2 + dz2) 

and 
riP + y2 = '-2(ex{J + 1'2) = 1; 

thus, with no loss in generality, we set ,2 = 1. The 
field equations for the QDF (Ll) with ~2 = 1 arel 

oc.-1(/i + oc.") + a.p + '12 + oc.' {J' + 1"2 = 0, (2.2) 

{J-l(P + (J") + riP + '12 + oc.' (J' + 1"2 = 0, (2.3) 

1'-1('9 + 1''') + riP + '12 + oc.' {J' + 1"2 = 0, (2.4) 

if; + flJ" = oc.' {J' + 1"2, 

ft.{J' + ex'P + 2yy' = 0. 

(2.5) 

(2.6) 

(2.7) 

Comparing Eqs. (2.5) and (2.6) we see that 

&.p + '12 - ex' {J' - 1"2 = 0. (2.8) 

Since ,2 = 1 we have, assuming ex ¥:- 0, 

(J = ex-1(1 - 1'2); (2.9) 

substituting Eq. (2.9) in Eqs. (2.7) and (2.8) we 
obtain 

( . , + ,.) Y + . ,1 - 1'2 ., oc.y oc. I' - oc.ex --2 - = 1'1' 
oc. ex 

(2.10) 

and 

2( " ,,)1'+(.2 '2)1- 1'2 ·2 ,2 (2.11) oc.y - ex I' - ex - ex --2 - = I' - I' , 
ex oc 

respectively. Solving Eqs. (2.10) and (2.11) for yex-1 

1 C. Meller, The Theory of Relativity (Oxford University Press, 
London, 1962), Sec. 118. We have set the cosmological constant 
equal to zero. 

and (1 - y2)ex-2 we obtain 

I' (ri'1 + ex'y')(riy' - ex'y) 
~ = (li2 + oc,Z)(riy' - oc.''1) , 

1 - 1'2 (y2 + y,2)(riy' - ex''1) 

~ = - (li2 + ex,2)(liy' - ex''1) . 

(2.12) 

(2.13) 

We now show that by assuming (&'1" - OC''1) ¥:- 0 
we get a contradiction; in this case 

I' li'1 + oc'y' 
;; = ri2 + OC,2 ' 

Substituting the first of these in the second we obtain 

1 (riy' - ex'y/ -+ -0' ex2 (&.2 + OC'2)2 - , 
(2.14) 

but this implies that 

1 (riy' - oc.''1)2 -= =0 
oc2 (li2 + OC'2)2 ' 

or 

ft.y' - oc''1 = 0, (2.15) 

which contradicts our initial assumption. We thus 
conclude that Eq. (2.15) must hold. 

The most general solution of Eq. (2.15) is 

I' = y(ex); 

it follows from Eqs. (2.9) and (2.16) that 

{J = (J(ex). 

(2.16) 

(2.17) 

Substituting Eqs. (2.16) and (2.17) in Eqs. (2.7) and 
(2.8) we find 

lioc' [~ + e:n = 0, (2.18) 

(ri
z 

- OC'2{~~ + e:n = O. (2.19) 

If 

d{3 + (dy )2 ¥:- 0, 
dex doc 

then Ii = oc.' = ° and ex, {J, and yare constants. 
Otherwise, 

d{J + (dy )2 = o. 
doc doc. 

(2.20) 

In view of Eq. (2.20) we see that 

riP + '12 = ex' {3' + 1"2 = ° (2.21) 

and the field equations (2.2), (2.3), and (2.4) take the 
form 

IX. + ex" = P + {J" = y + 1''' = 0. (2.22) 
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Substituting for y in Eq. (2.22) from Eq. (2.16) we 
obtain 

or 

with the solution 
y = C1(X + C2 ; 

similarly, we obtain 

{3 = Ca(X + C" 

where C1 , ••• , C, are constants. Since 

(X{3 + y2 = 1, 
we find that 

(2.23) 

(2.24) 

(2.25) 

y = C1(X ± 1, {3 = -q(X T 2C1. (2.26) 

If we assume C1 > ° and choose the upper signs in 
Eqs. (2.26), upon setting 

(X = (C1)-IIX, u = (C1)!(u + v), 
v = (C1)!(2u + v) 

in the QDF (Ll), we find that 

ds2 = IX dil2 + 2 dil dv - e'P(dx2 + dz2); (2.27) 

by following a similar procedure, one can reduce all 
other possibilities in Eqs. (2.26) to this form. If 
(X = 0, then y2 = 1 and the resulting QDF is seen to 
be that in Eq. (2.27) if we replace IX and u by - {3 and 
v, respectively, since even in this case (3 satisfies Eq. 
(2.22). 

From Eq. (2.22) we see that we may choose IX as 
our coordinate x and, if we choose z(x, z) to be the 
function conjugate to IX the QDF (2.27) reduces to 

ds2 = X du2 + 2 du dv - e'P(dx2 + dz2) (2.28) 

in which we have dropped the bars for convenience. 
Of course this transformation cannot be made if IX 
is constant. In this case we see from the expressions 
for the affine connections in the Appendix that all 
r~v vanish except 

ril = I'~a = -r!a = tif! 
and 

-I'rl = ria = r~a = tgy'· 

Thus the only component of the curvature tensor 
that does not vanish identically is 

Rl3la = t( if; + gy")e'P; 

but we see from Eqs. (2.21) and (2.5) that 

if; + gy" = o. (2.29) 

Hence, R13l3 is also zero and these solutions are flat. 
It follows that all nonflat vacuum solutions of the 
field equations for the QDF (1.1) with (X{3 + y2 
constant may be put into the form in Eq. (2.28) in 
which gy is a solution of Eq. (2.29). 

3. MATHEMATICAL PROPERTIES OF THE 
SOLUTIONS 

A. Curvature Tensor 

We find for the QDF (2.28) that the only non­
vanishing components of the curvature tensor are 

Rotol = - Rolol = lif!, 
R0103 = 19y', (3.1) 

modulo the symmetries of the curvature tensor, with 

The QDF (2.28) is therefore seen to be flat if and 
only if cp is constant. The eigenvalues and, hence, the 
second-order differential invariants are all zero.2 

B. Killing Vectors 

In general, we have two and only two Killing vectors 
for the QDF (2.28): 

and 

where 

IlL = (0, 0, 1, 0) = b~ 

IlL = (1,0,0, 0) = bg, 

b~ = {I, !-l = v, 
0, !-l ~ v. 

(3.2) 

(3.3) 

If gy = Ax + Bz we have the additional Killing vector 

IlL = (0, B, 0, -A) (3.4) 
and if 

gy = -In 4A2[(X + B)2 + (z + C)2] + Darctan x + B 
x+C 

we have the additional Killing vector 

III = [u, -2(x + B), Bu - v, -2(z + C)]. (3.5) 

For all cp, the Killing vector in Eq. (3.2) is hyper­
surface-orthogonal; when gy = Ax + Bz, the Killing 
vector in Eq. (3.4) is also hypersurface-orthogonal. 
Since these vectors are null and spacelike, respec­
tively, and since these are the only hypersurface­
orthogonal Killing vectors, we conclude that all 
nonflat vacuum solutions for the QDF (2.28) are 
stationary and nonstatic. 

C. Algebraic Classification 

We find that for all solutions represented by the 
QDF (2.28) the nulI Killing vector IlL = b~ satisfies 

• A. s. Petrow, German trans!.: Einstein-Raume (Akademie­
Verlag, Berlin, 1964), Chap. III. 
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the equations 

and 

constants C1 ,'" , C4 for which {J, yare real and 
(3.6) satisfy Eq. (4.2) other than when (I., {J, and yare all 

constant. If li2 - (1.'2 = 0, then we are left with the 
(3.7) equation 

Therefore, the solutions are type N with all optical 
parameters vanishing3 and form a subclass of the 
general class of so-called pp waves.4 

4. OTHER APPLICATIONS 

We can apply a similar analysis to the QDF 

ds2 = e'P(du2 - dv2) - (I. dx2 - 2y dx dz - (3 dz2, 

(4.1) 

where gllv = gllv(u, v); in this case, the conformally 
flat two-space has signature zero compared to a 
signature of -2 for the QDF (1.1). For normal­
hyperbolic noncanonical solutions of the field equa­
tions we set 

(I.{J - y2 = 1 (4.2) 

and proceed as before. We again find that {3 and y 
must be functions of (I. with 

d2 d2fJ 
ii. - (I." = (&.2 - (1.'2) -.1 = (i2 

- (1.,2) - = ° (43) . d(l.2 d(l.2·· 

If li2 - (1.'2 ~ 0, {J and y have the forms in Eqs. (2.25) 
and (2.24); however, there are no choices for the 

:=z: 0 

oc 

dfJ _ (dy)2 = ° 
d(l. d(l. 

or, with the use of Eq. (4.2), 

(
dY _ t)2 + .!. = 0, 
d(l. (I. (1.2 

(4.4) 

which has no real solution. Thus, since, as for the 
QDF (1.1), the solutions are flat for CY., (J, y constant, 
we conclude that there are no noncanonical solutions 
of the field equations for the QDF (4.1) other than 
those that are flat. 

APPENDIX 

For the metric tensor in the QDF (1.1) we find 

gOO = ,-2{J, g02 = _,-2y, 

g22 = _,-2(1., gll = g33 = _e-'P, 

and all other gllv = 0. The affine connections defined 
by 

r~V = tgP""(g"O'.v + gvu.1' - gl'v.,,) 

are given by 

2 3 

o o 0 "2 e-'P 0 

o floc + yy 0 
rxi' - y,x 

2I' ~ 
o 

o 2 0 
y 

- 2e-'P 0 

o {lrx' + )')" 
0 

rxy' - yrx' 

2~2 2~2 3 

0 
'f; 0 
2 

y& - fly 0 
(J.~ + )'Ji 

2I' 2r 2 o 

0 
cp' 

0 
2 3 

2 2 0 - ~ e-'P 
2 

0 

2 
y{l' - fly' 

0 
rxW +1'1" 

2~2 n2 3 o 

3 0 
rp 

0 -2 3 
cp' 

2" 

3 R. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961). .,. . 
• H. W. Brinkman, Proc. Nat. Acad. Sci. US 9, 1 (1923). For a detaIled dISCUSSIon of these solutIons, see J. Ehlers and W. Kundt, 

Gravitation: An Introduction to Current Research, L. Witten, Ed. (John Wiley & Sons, Inc., New York, 1962), p. 49. 
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